Innovative Dual-Rotor Wind Turbine (DRWT) Designs for Improved Turbine Performance and Wind Farm Efficiency

创新的双转子风力涡轮机 (DRWT) 设计可提高涡轮机性能和风电场效率

基本信息

  • 批准号:
    1438099
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Principal Investigator: Hui HuNumber: 1438099Title: Innovative Dual-Rotor Wind Turbine (DRWT) Designs for Improved Turbine Performance and Wind Farm EfficiencyInstitution: Iowa State University Although wind turbines are widely used for conversion of wind energy to electrical power, there are still many opportunities for improvements in their design and operation to increase the efficiency of wind energy harvesting, and the reduction in cost that results from these improvements. A key area for improvement is the design of the turbine rotor blade. Structural, manufacturing, and transportation constraints in utility-scale wind turbines lead to aerodynamically imperfect blade designs, especially in the root region near the hub joining the rotor blade. Root loss is estimated to cause about 5% loss in wind energy extraction for a single wind turbine. This problem is compounded in wind farms containing many wind turbines, where mixing of air creates a wake. Wake losses in wind farms resulting from the ingestion of upstream turbine wakes by downstream turbines range between 8 to 40% of wind energy harvesting efficiency, depending on onshore vs. off shore wind farm location, turbine layout, and atmospheric stability conditions. The goal of this research is to conduct a comprehensive theoretical and experimental study to explore a novel dual-rotor wind turbine (DRWT) concept to mitigate these losses for improved turbine performance and wind farm efficiency. In this dual-rotor concept, a smaller set of turbine blades is positioned near the larger blades to reduce the root loss and improve wind turbine efficiency using aerodynamic principles. This novel dual-rotor wind turbine configuration will be studied experimentally using scale models in a wind tunnel. Experimental studies will be complimented by advanced computer simulations to identify the best design for the dual rotor system. With respect to education and broadening participation, course modules developed from these research efforts will be incorporated into the undergraduate and graduate mechanical and aerospace engineering courses at Iowa State University (ISU). Existing programs at ISU will be used to recruit students from under-represented groups in engineering for participation in the research project. The project results will also be used to prepare seminars and demonstrations on Renewable Energy and Wind Turbine Technology for presentation at local K-12 schools to increase public awareness about recent advances in wind energy. The project will also continue existing collaborations with wind turbine manufacturers.Technical Description Structural, manufacturing, and transportation constraints in utility-scale wind turbines lead to aerodynamically imperfect blade designs, especially in the root region near the hub joining the rotor blade. Root loss is estimated to cause about 5% loss in wind energy extraction for a single wind turbine. The goal of this research is to conduct a comprehensive theoretical, numerical, and experimental study to explore a novel dual-rotor wind turbine (DRWT) concept to mitigate root losses for improved turbine performance and wind farm efficiency. The proposed DRWT concept will employ a secondary, smaller, co-axial rotor that is intended to mitigate losses incurred in the root region of the main rotor by using an aerodynamically optimized secondary rotor, and also mitigate wake losses in wind farms through rapid mixing of turbine wake and increased upper-layer flow entrainment. The integration of experimental and numerical modeling studies will enable a first-principles based evaluation of the proposed DRWT concept. Numerical simulations will first be used to design an aerodynamically optimum DRWT. Aerodynamic performance of the optimized DRWT will be investigated for operation of a single turbine and then a turbine array sited in non-homogenous atmospheric boundary layer (ABL) flows. Towards this end, the large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) wind tunnel at Iowa State University (ISU) will be used for the experimental study. In addition to measuring turbine power outputs and dynamic wind loads acting on model DRWTs, a high-resolution Particle Image Velocimetry (PIV) system will measure the flow field to characterize turbine wake-vortex system dynamics relative to conventional single-rotor wind turbines. Highly resolved Large Eddy Simulations (LES) will be also performed in coordination with the experimental study to elucidate the underlying flow physics. With respect to broader impacts in education and outreach, the project results will also be used to prepare seminars and demonstrations on Renewable Energy and Wind Turbine Technology for presentation at local K-12 schools to increase public awareness about recent advances in wind energy. The project will also continue existing collaborations with wind turbine manufacturers.
主要研究者:惠虎编号:1438099标题:创新的双转子风力涡轮机(DRWT)设计,以提高涡轮机性能和风电场效率机构:爱荷华州州立大学虽然风力涡轮机被广泛用于风能转换为电能,但仍有许多机会在其设计和操作方面进行改进,以提高风能收集的效率,并降低这些改进导致的成本。 需要改进的一个关键领域是涡轮机转子叶片的设计。 公用事业规模的风力涡轮机中的结构、制造和运输约束导致叶片设计在空气动力学上不完美,特别是在连接转子叶片的轮毂附近的根部区域中。根损失估计在单个风力涡轮机的风能提取中造成约5%的损失。 这个问题在包含许多风力涡轮机的风力发电场中更加复杂,其中空气的混合产生尾流。 由下游涡轮机吸入上游涡轮机尾流导致的风力发电场中的尾流损失在风能收集效率的8%至40%之间,这取决于陆上与海岸风力发电场位置、涡轮机布局和大气稳定性条件。 本研究的目的是进行全面的理论和实验研究,探索一种新的双转子风力涡轮机(DRWT)的概念,以减少这些损失,提高涡轮机的性能和风电场的效率。 在该双转子概念中,较小的一组涡轮机叶片定位在较大叶片附近,以利用空气动力学原理来减少根部损失并提高风力涡轮机效率。 这种新型的双转子风力涡轮机配置将在风洞中使用比例模型进行实验研究。 实验研究将通过先进的计算机模拟来补充,以确定双转子系统的最佳设计。 在教育和扩大参与方面,从这些研究工作中开发的课程模块将纳入爱荷华州州立大学(ISU)的本科生和研究生机械和航空航天工程课程。 ISU现有的项目将用于招募来自工程领域代表性不足的群体的学生参与研究项目。项目成果还将用于筹备可再生能源和风力涡轮机技术研讨会和演示,在当地K-12学校进行演示,以提高公众对风能最新进展的认识。该项目还将继续与风力涡轮机制造商进行现有的合作。技术说明大型风力涡轮机的结构、制造和运输限制导致叶片设计在空气动力学方面存在缺陷,特别是在连接转子叶片的轮毂附近的根部区域。根损失估计在单个风力涡轮机的风能提取中造成约5%的损失。 本研究的目的是进行全面的理论、数值和实验研究,以探索一种新型双转子风力涡轮机(DRWT)概念,以减轻根部损失,提高涡轮机性能和风电场效率。 所提出的DRWT概念将采用较小的二次同轴转子,旨在通过使用空气动力学优化的二次转子来减轻主转子根部区域中产生的损失,并通过涡轮机尾流的快速混合和增加的上层气流夹带来减轻风电场中的尾流损失。实验和数值模拟研究的整合将使第一原则为基础的评估建议DRWT的概念。 数值模拟将首先被用来设计一个气动优化DRWT。 将研究优化后的DRWT在非均匀大气边界层(ABL)气流中运行时的气动性能,包括单个涡轮机和涡轮机阵列。为此,将使用爱荷华州州立大学(ISU)的大尺度空气动力学/大气边界层(AABL)风洞进行实验研究。 除了测量涡轮机功率输出和作用在DRWT模型上的动态风载荷外,高分辨率粒子图像测速(PIV)系统还将测量流场,以表征相对于传统单转子风力涡轮机的涡轮机尾涡系统动态特性。高分辨率的大涡模拟(LES)也将与实验研究协调进行,以阐明基本的流动物理。 关于在教育和宣传方面的广泛影响,项目成果还将用于筹备关于可再生能源和风力涡轮机技术的研讨会和演示,在当地K-12学校进行演示,以提高公众对风能最新进展的认识。该项目还将继续与风力涡轮机制造商的现有合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Hu其他文献

Constrained solution of CEC 2017 with monarch butterfly optimisation
CEC 2017 帝王蝶优化的约束解
Safety Assessment of Road Passenger Transportation Enterprise on Key Criteria
道路客运企业关键指标安全评价
On approximate solutions of infinite systems of linear inequalities
关于无限线性不等式系统的近似解
  • DOI:
  • 发表时间:
    1989
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui Hu;Qing Wang
  • 通讯作者:
    Qing Wang
Investigation on Mechanical Properties of S30403 Austenitic Stainless Steel at Different Temperatures
S30403奥氏体不锈钢不同温度力学性能研究
Three Mn(II) complexes based on 6-(3-pyridyl)isophthalic acid ligand:
三种基于 6-(3-吡啶基)间苯二甲酸配体的 Mn(II) 配合物:
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Xiuling Zhang;Na Wang;Peng-Fei Liu;Da-Shuai Zhang;Hui Hu
  • 通讯作者:
    Hui Hu

Hui Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Hu', 18)}}的其他基金

A Fundamental Study on Unsteady Heat Transfer and Dynamic Ice Accretion Processes Pertinent to UAV Icing Protection
与无人机防冰相关的非稳态传热和动态积冰过程的基础研究
  • 批准号:
    2313310
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
PFI-TT: Development of A New Class of Low-Power, Plasma-Based Wind Turbine Icing Protection Systems
PFI-TT:开发新型低功率等离子体风力涡轮机结冰保护系统
  • 批准号:
    2140489
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
A Fundamental Study Toward Innovative Plasma-Based Anti-/De-icing Strategies for Aircraft Icing Mitigation
针对飞机结冰的创新型等离子体防/除冰策略的基础研究
  • 批准号:
    1935363
  • 财政年份:
    2020
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: A fundamental study on supercooled large droplets: impacting, splashing, surface water dynamics, and ice accretion
合作研究:过冷大液滴的基础研究:撞击、飞溅、地表水动力学和积冰
  • 批准号:
    1916380
  • 财政年份:
    2019
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
NNA: Bridging the Atomistic Deformation Mechanisms to the Microscopic Adhesive-to-Cohesive Fracture at Ice-Metal Interfaces
NNA:将原子变形机制与冰-金属界面处的微观粘着-内聚断裂联系起来
  • 批准号:
    1824840
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Quantification of Wind-Driven Surface Water Transport Process for Aircraft Icing Studies
飞机结冰研究中风力驱动的地表水输送过程的量化
  • 批准号:
    1435590
  • 财政年份:
    2014
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Characterization of Surface Wind Energy Resources and Wake Interferences among Wind Turbines over Complex Terrains for Optimal Site Design and Turbine Durability
复杂地形上地面风能资源和风力涡轮机尾流干扰的表征,以实现最佳场地设计和涡轮机耐久性
  • 批准号:
    1133751
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Icing Physics Studies Pertinent to Wind Turbine Icing and De/Anti-icing
与风力涡轮机结冰和除冰/防冰相关的结冰物理研究
  • 批准号:
    1064196
  • 财政年份:
    2011
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
IRES: US-China Collaboration on Bio-Inspired Aerodynamic Designs for the Development of Next Generation Micro Air Vehicles
IRES:美中合作开发下一代微型飞行器的仿生空气动力学设计
  • 批准号:
    1064235
  • 财政年份:
    2011
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CAREER: Development of a Molecule-based Diagnostic Technique to Study Joule Heating and Micro-scale Heat Transfer Process in Electrokinetically-driven Microfluidics
职业:开发基于分子的诊断技术来研究电动驱动微流体中的焦耳热和微尺度传热过程
  • 批准号:
    0545918
  • 财政年份:
    2006
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似国自然基金

基于双荧光结核菌和Dual RNA-seq技术的病原宿主免疫互作关键基因挖掘及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Dual AGN 的系统搜寻及其性质研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
AKAP3通过其Dual和RI结构域整合多重信号通路调控精子活力和男性育性的机理研究
  • 批准号:
    82171602
  • 批准年份:
    2021
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
磷化双贱金属合金超薄膜dual-(Bimetallene-P)催化材料的超声脉冲界面构筑及其电解水性能研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
基于dual-buck本征安全型单相 V2G 变换器解耦式拓扑集成及复合调制策略
  • 批准号:
    62141103
  • 批准年份:
    2021
  • 资助金额:
    12.00 万元
  • 项目类别:
    专项项目
利用Dual RNA-sep研究猪瘟病毒与宿主转录组相互作用的分子机制
  • 批准号:
    31872484
  • 批准年份:
    2018
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
基于Dual-Kriging代理模型的稳健设计新方法及在板料成形中应用研究
  • 批准号:
    51005193
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Expanding syphilis screening among pregnant women in Indonesia using the rapid dual test for syphilis & HIV with capacity building: The DUALIS Study
使用梅毒快速双重检测扩大印度尼西亚孕妇梅毒筛查
  • 批准号:
    MR/Y004825/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
超高分解能超音波とDual-energy CTによる腸管虚血ペナンブライメージング技術の開発
超高分辨率超声和双能CT肠道缺血半暗带成像技术的发展
  • 批准号:
    24K18752
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
  • 批准号:
    2339866
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
ICF: A novel dual-target gene therapy for safe and efficacious treatment of chronic non-infectious uveitis
ICF:一种安全有效治疗慢性非感染性葡萄膜炎的新型双靶点基因疗法
  • 批准号:
    MR/Z50385X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grant
Dual Syphilis and HIV: Evaluation of POC and Self-Test by Untrained Persons, Peers and Intended Users
双梅毒和 HIV:未经培训的人员、同行和目标用户对 POC 和自检的评估
  • 批准号:
    502788
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Directed Grant
NSF Convergence Accelerator Track L: UAV-assisted dual-comb spectroscopic detection, localization, and quantification of multiple atmospheric trace-gas emissions
NSF 收敛加速器轨道 L:无人机辅助的双梳光谱检测、定位和多种大气痕量气体排放的量化
  • 批准号:
    2344395
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Dual Series Gate Configuration, Materials Design, and Mechanistic Modeling for Drift-Stabilized, Highly Sensitive Organic Electrochemical Transistor Biosensors
用于漂移稳定、高灵敏度有机电化学晶体管生物传感器的双串联栅极配置、材料设计和机械建模
  • 批准号:
    2402407
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Chirality-Driven Self-Assembly of Dual Catalytic Dendrimers: Application Toward One-Pot Tandem Reactions
双催化树枝状聚合物的手性驱动自组装:一锅串联反应的应用
  • 批准号:
    2426644
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了