Highly efficient numerical solution of the Boltzmann equation for practical applications

玻尔兹曼方程的实际应用的高效数值求解

基本信息

  • 批准号:
    1438530
  • 负责人:
  • 金额:
    $ 31.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

PI: Varghese, Philip L.Proposal Number: 1438530The goal of the proposed research is to develop an improved method to compute flows under conditions where the conventional continuum equations are invalid. If successful, the work would result in solution strategies for a broad range of applications where continuum equations fail. The work proposed will advance the state-of-the-art for hybrid flow simulations that are important in design and simulation of wafer fabrication machines, plasma processing equipment, and micro-sensors.The continuum approach to fluid mechanics reaches its limitations in rarefied flows and in micro- and nanoflows. A commonly used approach for computing non-continuum flows is the direct simulation Monte Carlo (DSMC) method, which can be thought of as providing a statistical representation of solutions of the Boltzmann equation by modeling the behavior of a large number of the molecules in the flow. This proposal is about a novel scheme to solve the Boltzmann equation numerically that has the potential to alleviate many of the limitations of DSMC, including feasibility for large scales. The proposed work is based on a new idea on how to compute the collisional integral, which appears in the Boltzmann equation and has been the reason for inefficient solutions and approximations to-date, using a projection into a discrete yet conservative velocity space. This approach can be viewed as a variation of DSMC that uses variable-mass fixed-velocity quasi-particles, rather than fixed-mass variable-velocity particles. Preliminary results show good agreement with theoretical predictions. The software developed during this project will be given to other academic and government laboratory users on request. The research center within the Institute for Computational Engineering and Sciences at UT Austin will be utilized for dissemination - it has established high standards for software documentation and code verification and validation. This award by the Fluid Dynamics Program of the CBET Division is co-funded by CIF 21 Software Reuse Venture Fund Program of the CISE/ACI Division.
PI:Varghese, Philip L. 提案编号:1438530 拟议研究的目标是开发一种改进的方法来计算传统连续介质方程无效的条件下的流动。如果成功的话,这项工作将为连续介质方程失效的广泛应用提供解决方案。所提出的工作将推进混合流模拟的最先进水平,这对于晶圆制造机器、等离子体处理设备和微传感器的设计和模拟非常重要。流体力学的连续介质方法在稀薄流以及微米和纳米流中达到了其局限性。计算非连续流的常用方法是直接模拟蒙特卡罗 (DSMC) 方法,可以将其视为通过对流中大量分子的行为进行建模来提供玻尔兹曼方程解的统计表示。该提案是关于一种数值求解玻尔兹曼方程的新颖方案,该方案有可能缓解 DSMC 的许多局限性,包括大规模的可行性。所提出的工作基于如何计算碰撞积分的新想法,该想法出现在玻尔兹曼方程中,并且是迄今为止解决方案和近似值低效的原因,使用投影到离散但保守的速度空间中。这种方法可以被视为 DSMC 的一种变体,它使用可变质量定速准粒子,而不是固定质量变速粒子。初步结果与理论预测吻合良好。该项目期间开发的软件将根据要求提供给其他学术和政府实验室用户。德克萨斯大学奥斯汀分校计算工程与科学研究所内的研究中心将用于传播——它为软件文档和代码验证和确认建立了高标准。该奖项由 CBET 部门流体动力学项目颁发,并由 CISE/ACI 部门 CIF 21 软件重用风险基金项目共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Varghese其他文献

Modeling rarefied gas chemistry with QuiPS, a novel quasi-particle method
  • DOI:
    10.1007/s00162-021-00598-4
  • 发表时间:
    2022-01-24
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Yasvanth Poondla;David Goldstein;Philip Varghese;Peter Clarke;Christopher Moore
  • 通讯作者:
    Christopher Moore
Hernia referral pathway – Streamlining patient referral pathway to deliver a cost effective, efficient patient centred care
  • DOI:
    10.1016/j.ijsu.2014.07.086
  • 发表时间:
    2014-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Philip Varghese;Parminderjit Jayia;William Fusi-Rubiano;Frank Curran;Mangta Manu
  • 通讯作者:
    Mangta Manu
Improving PIC-DSMC Simulations of RF Plasmas via Event Splitting.
通过事件分裂改进射频等离子体的 PIC-DSMC 仿真。
Topography formation driven by sublimation of pure species on icy airless worlds
冰冷无空气世界上纯物种升华驱动的地形形成
  • DOI:
    10.1016/j.icarus.2024.116043
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Antonio Macias;D. Berisford;David Goldstein;Philip Varghese;Laurence Trafton;Jordan Steckloff;K. Hand
  • 通讯作者:
    K. Hand
Neoadjuvant chemo-radiotherapy and lymph node retrieval rates after curative resection for rectal cancers- should the same standards apply?
  • DOI:
    10.1016/j.ijsu.2012.06.161
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Philip Varghese;Zakir Mohamed;Fadlo Shaban;Talvinder Gill;Mohammed Tabaqchali;Dharmendra Garg;David Borowski;Anil Agarwal
  • 通讯作者:
    Anil Agarwal

Philip Varghese的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Varghese', 18)}}的其他基金

MRI: Novel Laser Velocimeter Using Modulated Filtered Rayleigh Scattering
MRI:使用调制滤波瑞利散射的新型激光测速仪
  • 批准号:
    9871249
  • 财政年份:
    1998
  • 资助金额:
    $ 31.64万
  • 项目类别:
    Standard Grant
Spatially Resolved Diagnostics Using Tunable Laser Absorption Spectroscopy
使用可调谐激光吸收光谱进行空间分辨诊断
  • 批准号:
    9215080
  • 财政年份:
    1992
  • 资助金额:
    $ 31.64万
  • 项目类别:
    Continuing Grant
Development of an Expert System for High Resolution Diode Laser Spectroscopy
高分辨率二极管激光光谱专家系统的开发
  • 批准号:
    8604411
  • 财政年份:
    1986
  • 资助金额:
    $ 31.64万
  • 项目类别:
    GAA
Research Initiation: Laser Absorption Measurements on Formaldehyde
研究启动:甲醛激光吸收测量
  • 批准号:
    8404277
  • 财政年份:
    1984
  • 资助金额:
    $ 31.64万
  • 项目类别:
    Standard Grant

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 31.64万
  • 项目类别:
    Standard Grant
Exploration of efficient turbulence stimulation method with data assimilation of numerical simulation and measurement
数值模拟与测量数据同化的高效湍流模拟方法探索
  • 批准号:
    23H01622
  • 财政年份:
    2023
  • 资助金额:
    $ 31.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
  • 批准号:
    2311354
  • 财政年份:
    2023
  • 资助金额:
    $ 31.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309548
  • 财政年份:
    2023
  • 资助金额:
    $ 31.64万
  • 项目类别:
    Standard Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 31.64万
  • 项目类别:
    Standard Grant
Efficient numerical methods for wave-action transport and scattering
波作用输运和散射的高效数值方法
  • 批准号:
    EP/W007436/1
  • 财政年份:
    2022
  • 资助金额:
    $ 31.64万
  • 项目类别:
    Research Grant
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPAS-2020-00102
  • 财政年份:
    2022
  • 资助金额:
    $ 31.64万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Developing Efficient Numerical Algorithms Using Fast Bayesian Random Forests
使用快速贝叶斯随机森林开发高效的数值算法
  • 批准号:
    2748743
  • 财政年份:
    2022
  • 资助金额:
    $ 31.64万
  • 项目类别:
    Studentship
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPIN-2020-06278
  • 财政年份:
    2022
  • 资助金额:
    $ 31.64万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
  • 批准号:
    569181-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 31.64万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了