BPEC: Collaborative Research: Creating Personalized Learning Pathways by Managing Cognitive Load

BPEC:协作研究:通过管理认知负荷创建个性化学习路径

基本信息

  • 批准号:
    1440996
  • 负责人:
  • 金额:
    $ 42.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Washington University, in collaboration with the St. Louis Science Center will develop and evaluate a computer programing environment that uses personalized learning pathways to better engage and support young learners. In both formal and informal education settings, examples of solved problems are an important learning resource, enabling self-teaching, and supporting the inherent heterogeneity found in classrooms. Recent studies of programmers at varying experience levels revealed that selecting and adapting example code shared on the web is often used to support just in time learning and to access infrequently used techniques. However, while examples can be powerful learning tools, they must be well-matched to the learner's experience level and learning preferences. The project staff will develop computer algorithms that predict what future problems and examples will maximize learning for a specific learner.Research on learning via examples has demonstrated that by controlling the cognitive load for a given learner through the selection and presentation of examples and their related practice problems, it is possible to improve learner's success on near and far transfer tasks. This proposal hypothesizes that by carefully controlling the cognitive load, it will be possible to construct personalized learning pathways that help a learner to efficiently move from a novice understanding to mastery of a concept. This project aims to answer the following questions:1) Is it possible to predict the perceived cognitive load for a future problem, given a learner's history and use this to select an appropriate next problem for that learner? 2) What are the factors of a learner's history that are most predictive of the perceived cognitive load for a future problem?3) Is it possible to effectively use the predicted cognitive load to construct personalized learning pathways for an individual learner?
华盛顿大学将与圣路易斯科学中心合作,开发和评估一种使用个性化学习途径的计算机编程环境,以更好地吸引和支持年轻学习者。在正规和非正规教育环境中,已解决问题的例子都是一种重要的学习资源,能够实现自学,并支持课堂上固有的异质性。最近对不同经验水平的程序员进行的研究表明,选择和调整在网络上分享的示例代码通常用于支持及时学习和获取不常用的技术。然而,尽管例子可以是强大的学习工具,但它们必须与学习者的经验水平和学习偏好很好地匹配。项目工作人员将开发计算机算法,以预测未来哪些问题和示例将使特定学习者的学习最大化。通过示例学习的研究表明,通过选择和呈现示例及其相关练习问题来控制给定学习者的认知负荷,可以提高学习者在近迁移和远迁移任务上的成功率。这一建议假设,通过仔细控制认知负荷,将有可能构建个性化的学习路径,帮助学习者有效地从新手理解到掌握一个概念。本项目旨在回答以下问题:1)在给定学习者的历史的情况下,是否有可能预测未来问题的认知负荷,并据此为该学习者选择合适的下一个问题?2)学习者历史中哪些因素最能预测未来问题的认知负荷?3)是否有可能有效地利用预测的认知负荷为个体学习者构建个性化的学习路径?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caitlin Kelleher其他文献

An Exploratory Study of Programmers’ Analogical Reasoning and Software History Usage During Code Re-Purposing
程序员在代码重新利用期间的类比推理和软件历史使用的探索性研究

Caitlin Kelleher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Caitlin Kelleher', 18)}}的其他基金

The Tutor Engagement Assistant (TEA): Promoting High-Quality TA-Student Interactions
导师参与助理 (TEA):促进高质量的助教与学生互动
  • 批准号:
    2214538
  • 财政年份:
    2022
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant
HCC: Small: Code Stories: Linking Code Influences and Changes in Code Histories
HCC:小:代码故事:将代码影响和代码历史变化联系起来
  • 批准号:
    2128128
  • 财政年份:
    2021
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant
WORKSHOP: VL/HCC 2014 Graduate Consortium
研讨会:VL/HCC 2014 毕业生联盟
  • 批准号:
    1418176
  • 财政年份:
    2014
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant
CAREER: Looking Glass: Leveraging Mentor Interactions to Create Personalized Programming Help for Independent Learners
职业:镜子:利用导师互动为独立学习者创建个性化编程帮助
  • 批准号:
    1054587
  • 财政年份:
    2011
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Independent Learning of Computer Programming Using Programs Written by Peers
协作研究:使用同行编写的程序实现计算机编程的独立学习
  • 批准号:
    0835438
  • 财政年份:
    2008
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 42.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了