I-Corps: Combination targeted drug design for personalized cancer therapy

I-Corps:用于个性化癌症治疗的组合靶向药物设计

基本信息

  • 批准号:
    1445177
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

An estimated 1.6 million people in the U.S. developed some form of cancer last year and this number is predicted to increase in coming years. Standard treatment approaches for some forms of cancer (such as breast or prostrate) provide high chances of survival, whereas for other types of cancer such as pancreas or brain cancer, survivals rates are significantly lower. One significant issue with the current approaches is that a cancer patient is treated based on their cohort and not based on their personalized genetic makeup. This often leads to ineffective treatments and poor outcomes for patients at all levels of risk. The proposed technology is an optimized algorithm and software to discover potential multi-target protein combinations that can produce highly effective combination drug treatments. The proposed approach is novel in integrating drug screen and genomic characterization data for predicting effective drug combinations.The proposed process can produce truly personalized therapeutic options with a small set of input data. Specifically, the team is looking at multi-target protein combinations that can produce highly effective combination drug treatments, with a current focus on protein kinases. Protein kinases been shown to be effective in multiple types of cancer, and have led to a treatment for CML, a type of leukemia. The framework allows the team to refine and focus predictions as more data becomes available through parallel tests that can be performed, such as exome sequencing, RNA sequencing and siRNA knockdown experiments. Most existing personalized approaches are primarily focused on applying drugs to target specific mutations based on what happens in other similar models. This team's approach intends to improve on this by specifically looking for multi-target combinations and multi-drug therapeutics to overcome many of the obstacles faced in the expansion of targeted therapies to new cancer types.
据估计,去年美国有160万人患上了某种形式的癌症,预计这一数字在未来几年还会增加。某些形式的癌症(如乳腺癌或前列腺癌)的标准治疗方法提供了很高的生存机会,而对于其他类型的癌症,如胰腺癌或脑癌,生存率明显较低。当前方法的一个重要问题是,癌症患者是基于他们的队列而不是基于他们的个性化基因组成来治疗的。这通常会导致无效的治疗和所有风险水平的患者的不良结局。所提出的技术是一种优化的算法和软件,用于发现潜在的多靶点蛋白质组合,从而产生高效的组合药物治疗。 该方法在整合药物筛选和基因组特征数据以预测有效药物组合方面是新颖的,所提出的方法可以用少量的输入数据产生真正个性化的治疗方案。具体来说,该团队正在研究可以产生高效组合药物治疗的多靶点蛋白质组合,目前的重点是蛋白激酶。蛋白激酶已被证明对多种类型的癌症有效,并已导致对CML(一种白血病)的治疗。该框架允许团队通过可以进行的平行测试(如外显子组测序,RNA测序和siRNA敲除实验)来改进和集中预测。大多数现有的个性化方法主要集中在根据其他类似模型中发生的情况应用药物靶向特定突变。该团队的方法旨在通过专门寻找多靶点组合和多药物疗法来改善这一点,以克服将靶向疗法扩展到新癌症类型所面临的许多障碍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ranadip Pal其他文献

Cross study transcriptomic investigation of Alzheimer’s brain tissue discoveries and limitations
  • DOI:
    10.1038/s41598-025-01017-y
  • 发表时间:
    2025-05-08
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Fernando Koiti Tsurukawa;Yixiang Mao;Cesar Sanchez-Villalobos;Nishtha Khanna;Chiquito J. Crasto;J. Josh Lawrence;Ranadip Pal
  • 通讯作者:
    Ranadip Pal
Selected articles from the IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS'2011)
  • DOI:
    10.1186/1471-2164-13-s6-s1
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Ranadip Pal;Yufei Huang;Yidong Chen
  • 通讯作者:
    Yidong Chen

Ranadip Pal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ranadip Pal', 18)}}的其他基金

Collaborative Research: FET: Small: Machine Learning Models for Function-on-Function Regression
合作研究:FET:小型:函数对函数回归的机器学习模型
  • 批准号:
    2007903
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2019 International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC)
NSF 学生旅费资助 2019 年计算网络生物学国际研讨会:建模、分析和控制 (CNB-MAC)
  • 批准号:
    1937825
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2018 International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC)
NSF 学生旅费资助 2018 年计算网络生物学国际研讨会:建模、分析和控制 (CNB-MAC)
  • 批准号:
    1841780
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC 2017)
计算网络生物学国际研讨会:建模、分析和控制 (CNB-MAC 2017)
  • 批准号:
    1743820
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: Design of functionally-tested, genomics-informed personalized cancer therapy drug treatment plans
PFI:AIR - TT:设计经过功能测试、基于基因组学的个性化癌症治疗药物治疗计划
  • 批准号:
    1500234
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Robustness in Genetic Regulatory Network Modeling and Control
职业:遗传调控网络建模和控制的鲁棒性
  • 批准号:
    0953366
  • 财政年份:
    2010
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似海外基金

Mechanism-based combination therapy for cholangiocarcinoma
基于机制的胆管癌联合治疗
  • 批准号:
    10650049
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Development of multidrug combination molecular targeted therapeutics based on G protein-coupled receptor interactions in glioblastoma
基于G蛋白偶联受体相互作用的胶质母细胞瘤多药组合分子靶向治疗的开发
  • 批准号:
    23K08551
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Project 2: Androgen deprivation as an immune modulating therapy in combination with targeted immunotherapy of prostate cancer
项目2:雄激素剥夺作为免疫调节疗法与前列腺癌靶向免疫疗法相结合
  • 批准号:
    10555401
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Drug combination nanoparticles for advanced treatment of metastatic TNBC
用于晚期治疗转移性 TNBC 的药物组合纳米颗粒
  • 批准号:
    10648912
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Combination of tumor targeted therapy with stroma modulating agent for PDAC
肿瘤靶向治疗与基质调节剂联合治疗 PDAC
  • 批准号:
    10629924
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Developing a novel combination immunotherapy for triple-negative breast cancer
开发针对三阴性乳腺癌的新型联合免疫疗法
  • 批准号:
    10734197
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Novel DNA cross-linking agents and combination strategies for tumor-specific activation
新型 DNA 交联剂和肿瘤特异性激活的组合策略
  • 批准号:
    10730787
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
A combination strategy to target pathophysiology of chronic lymphocytic leukemia
针对慢性淋巴细胞白血病病理生理学的组合策略
  • 批准号:
    10577652
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Preclinical-clinical trials collaboration to effectively advance new combination therapies for atypical neurofibroma in neurofibromatosis type 1
临床前-临床试验合作有效推进1型神经纤维瘤病非典型神经纤维瘤的新联合疗法
  • 批准号:
    10611130
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
A single-arm phase II study to evaluate the safety and efficacy of combination systematic chemotherapy and multiple rounds of endoscopic ultrasound-guided radiofrequency ablation in pancreatic cancer
评估联合系统化疗和多轮内镜超声引导射频消融治疗胰腺癌的安全性和有效性的单组 II 期研究
  • 批准号:
    10743356
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了