Collaborative Research: Revealing the Role of Less-Mobile Porosity in Hyporheic Denitrification and Greenhouse Gas Production?

合作研究:揭示流动性较小的孔隙在潜流反硝化和温室气体产生中的作用?

基本信息

  • 批准号:
    1446328
  • 负责人:
  • 金额:
    $ 23.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

Streams and rivers have a remarkable cleansing function for natural and human generated contaminants, as microbes living in the streambed can transform these contaminants into less harmful compounds. Excess nitrogen in our terrestrial and aquatic ecosystems is now considered one of the greatest global-scale threats to humanity by degrading water quality and producing a powerful greenhouse gas. This research couples the cleansing function of rivers to this global excess nitrogen issue. Streambed bacteria can break down the reactive nitrogen compounds, primarily releasing non-reactive nitrogen gas that returns harmlessly to the atmosphere. However, a fraction is released as the strong greenhouse gas nitrous-oxide (N2O). Compelling data indicates pockets of longer-term water storage in streambeds, or microzones, create the low-oxygen conditions needed to both break-down dissolved nitrogen and form N2O. New remote sensing techniques of streambed microzones will allow us to better resolve the how nitrogen is attenuated and transformed through river transport, improving evaluations of watershed nutrient mitigation and helping better predict future climate change. Further, this research will dovetail with STEM education via community level partnerships with established outreach institutions. Outreach partners (Impression 5 Science Center and MSUSiFest) specialize in developing, executing and evaluating STEM exhibits and activities for children ages 4-12 and community "life-learners", both of which are key STEM demographics. Project PIs will connect with UConn undergraduate design teams and outreach partners to develop novel groundwater and streambed flow model exhibits and inquiry-based demonstrations designed to harness society's increasing fascination with real-time sensing and interaction. Outreach partners will use these products to illustrate principles of groundwater flow, contaminant transport, and greenhouse gas production, reaching 150,000+ students and community members each year.This project will link and quantify transient storage via dual-domain mass transport principles with the biogeochemical functions of stream sediments to reveal new insights on hyporheic denitrification and stream N2O production. This work is timely because recent global assessments reveal that rivers are major N2O producers, but the mechanism and spatial distribution of production remain unknown. Contrary to existing biogeochemical models for stream sediments, it is hypothesized that nitrate reduction to N2O occurs predominantly within streambed sediments that are oxic in a bulk sense but have local, anoxic less-mobile pore spaces. Largely overlooked in past work, these anoxic microsites must be mechanistically understood in order to upscale freshwater nitrogen dynamics from point, to reach, to basin scales. New observation methods and process-based models are needed to account for the role of anoxic microsites in fluid exchange and nitrogen biogeochemistry. Recently, project team members developed electrical geophysical methods for inference of less-mobile parameters, as the electric field can directly sense spatially variable solute dynamics in less-mobile porosity. Other team members have focused on developing labeled 15N tracer methods to reveal residence time controls on denitrification. These techniques will be combined to unlock the presence and function of anoxic microsites. The workplan comprises controlled laboratory experiments, numerical modeling, and field experiments at an established research site in the Ipswich Watershed, MA, USA. Our work will directly connect new process-based understanding to existing river network nitrate models, extending and capitalizing on previous NSF LINXII research. Specifically, the intrinsic properties of less-mobile pore space will be characterized, the existence of anoxic microsites and denitrification occurring in anaerobic microsites will be quantified, and multi-scale patterns of river nitrogen biogeochemistry will be enhanced. Overall, this work will transform the current understanding of hyporheic microsite processes, providing new mechanistic models of the role of hyporheic zones on watershed solute transport, nitrogen cycling and greenhouse gas production. The proposed research will address big questions about some very small places in our watersheds by quantifying hydrodynamic exchange with previously uncharacterized less-mobile hyporheic pore space.
溪流和河流对自然和人类产生的污染物具有显着的清洁功能,因为生活在河床中的微生物可以将这些污染物转化为危害较小的化合物。我们陆地和水生生态系统中过量的氮现在被认为是全球范围内对人类最大的威胁之一,因为它会降低水质并产生强大的温室气体。这项研究将河流的清洁功能与全球过量的氮问题联系起来。河床细菌可以分解活性氮化合物,主要释放非活性氮气,无害地返回大气。然而,有一小部分作为强烈的温室气体一氧化二氮(N2 O)释放。令人信服的数据表明,河床或微区中长期蓄水的口袋创造了分解溶解氮和形成N2 O所需的低氧条件。新的河床微区遥感技术将使我们能够更好地解决氮是如何通过河流运输衰减和转化,改善流域养分缓解的评估,并帮助更好地预测未来的气候变化。此外,这项研究将通过与已建立的外展机构建立社区级伙伴关系,与STEM教育相吻合。外展合作伙伴(印象5科学中心和MSUSiFest)专门为4-12岁的儿童和社区“生活学习者”开发、执行和评估STEM展览和活动,这两者都是STEM的关键人口。项目PI将与康州大学本科设计团队和外展合作伙伴建立联系,开发新颖的地下水和河床流动模型展览和基于调查的演示,旨在利用社会对实时传感和互动日益增长的迷恋。项目合作伙伴将利用这些产品来说明地下水流动、污染物迁移和温室气体产生的原理,每年有超过150,000名学生和社区成员参与。该项目将通过双域质量迁移原理将瞬时储存与河流沉积物的生态地球化学功能联系起来并进行量化,以揭示对潜流反硝化和河流N2 O产生的新见解。这项工作是及时的,因为最近的全球评估显示,河流是主要的N2 O生产者,但生产的机制和空间分布仍然未知。与现有的河流沉积物的生态地球化学模型相反,据推测,硝酸盐还原为N2 O主要发生在河床沉积物中,在散装意义上是好氧的,但有本地,缺氧少流动孔隙空间。在过去的工作中,这些缺氧的微站点被忽视,必须机械地理解,以高档淡水氮动态从点,达到,流域尺度。需要新的观察方法和基于过程的模型来解释缺氧微地点在流体交换和氮生物地球化学中的作用。最近,项目团队成员开发了电地球物理方法,用于推断流动性较低的参数,因为电场可以直接感知流动性较低的孔隙度中空间可变的溶质动态。其他团队成员专注于开发标记的15 N示踪方法,以揭示反硝化作用的停留时间控制。这些技术将被结合起来,以解开缺氧微位点的存在和功能。该工作计划包括受控实验室实验,数值模拟,并在伊普斯维奇流域,MA,美国的一个既定的研究地点的实地实验。我们的工作将直接将新的基于过程的理解与现有的河网硝酸盐模型联系起来,扩展并利用以前的NSF LINXII研究。具体而言,流动性较低的孔隙空间的固有属性的特点,缺氧微区的存在和发生在厌氧微区的反硝化作用将被量化,河流氮素地球化学的多尺度模式将得到加强。总的来说,这项工作将改变目前的理解,潜流微过程,提供新的机制模型的作用,潜流区流域溶质运移,氮循环和温室气体的产生。拟议的研究将解决一些非常小的地方在我们的流域通过量化水动力交换与以前未表征的流动性较低的潜流孔隙空间的大问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jay Zarnetske其他文献

Jay Zarnetske的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jay Zarnetske', 18)}}的其他基金

CAREER: Towards Forecasting Watershed Organic Carbon Fluxes across Flow Regimes and Ecoregions
职业:预测跨流域和生态区的流域有机碳通量
  • 批准号:
    1846855
  • 财政年份:
    2019
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Arctic Stream Networks as Nutrient Sensors in Permafrost Ecosystems
合作研究:北极溪流网络作为永久冻土生态系统中的营养传感器
  • 批准号:
    1916567
  • 财政年份:
    2019
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344214
  • 财政年份:
    2024
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH PGR: The epigenomic selfing syndrome: revealing the impact of breeding system on epigenomes
合作研究:研究 PGR:表观基因组自交综合症:揭示育种系统对表观基因组的影响
  • 批准号:
    2247915
  • 财政年份:
    2023
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Revealing the changing trophic niches of large herbivorous fish on modern coral reefs using an interdisciplinary approach
合作研究:利用跨学科方法揭示现代珊瑚礁上大型草食性鱼类营养生态位的变化
  • 批准号:
    2232883
  • 财政年份:
    2023
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Revealing the changing trophic niches of large herbivorous fish on modern coral reefs using an interdisciplinary approach
合作研究:利用跨学科方法揭示现代珊瑚礁上大型草食性鱼类营养生态位的变化
  • 批准号:
    2232882
  • 财政年份:
    2023
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH PGR: The epigenomic selfing syndrome: revealing the impact of breeding system on epigenomes
合作研究:研究 PGR:表观基因组自交综合症:揭示育种系统对表观基因组的影响
  • 批准号:
    2247914
  • 财政年份:
    2023
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Revealing Strengthening and Toughening Mechanisms in Coconut Endocarp through Integrated Multiscale Modeling and Characterization
合作研究:通过综合多尺度建模和表征揭示椰子内果皮的强化和增韧机制
  • 批准号:
    2316676
  • 财政年份:
    2023
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Revealing the changing trophic niches of large herbivorous fish on modern coral reefs using an interdisciplinary approach
合作研究:利用跨学科方法揭示现代珊瑚礁上大型草食性鱼类营养生态位的变化
  • 批准号:
    2232881
  • 财政年份:
    2023
  • 资助金额:
    $ 23.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了