EAGER: Assessment of the Numerical Reproducibility in Large-Scale Scientific Simulations on Multicore Architectures
EAGER:多核架构大规模科学模拟中的数值再现性评估
基本信息
- 批准号:1446794
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-15 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Trends in execution concurrency make a compelling case for the development of methods able to automatically and efficiently model and mitigate irreproducibility beyond petascale architectures and into the exascale. It is expected that high performance computers at the exascale will exhibit a massively large level of concurrency - a factor of 10,000 greater than on current platforms - which will move computer simulations from bulk-synchronous executions to multithreading approaches and asynchronous I/O. Simulation calculations and analysis routines will also be tightly coupled on exascale platforms, requiring these two workflow components to work at extremely high levels of concurrency. As concurrency levels increase, the impact of rounding errors on numerical reproducibility also increases, ultimately affecting the ability of scientific simulations to reproduce program executions and numerical results. Under these circumstances, irreproducible results may not be trusted by a scientific community expecting reproducible behaviors and any attempt to pursue reproducibility may come at a cost in performance that is too high.This "high risk-high payoff" project studies the impact of rounding errors on result reproducibility when concurrent executions burst and workflow determinism vanishes in cutting-edge multicore architectures. To this end, the project models rounding-errors in scientific applications with a mathematical method called "composite precision floating-point arithmetic" and shows how this method can mitigate error drifting. A benchmark suite used in preliminary work is extended to cover a larger range of applications' patterns and used to assess the mitigating impact of the composite precision on new generations of multicore architectures. Lastly, the project quantifies the cost and mitigation factors of the proposed method to mitigate error propagations for the diverse benchmarks and platforms.The project will advance knowledge and understanding in numerical reproducibility at the exascale by developing and disseminating effective software solutions to the rounding error propagation problem for a broad set of applications and their codes when executed with high degrees of concurrency on massively parallel systems.
执行并发性的趋势为开发能够自动有效地建模和减轻千万亿次架构之外的不可再现性并进入亿亿次的方法提供了一个令人信服的案例。预计艾级的高性能计算机将表现出巨大的并发水平-比当前平台大10,000倍-这将使计算机模拟从批量同步执行转向多线程方法和异步I/O。模拟计算和分析例程也将在亿级平台上紧密耦合,这需要这两个工作流组件以极高的并发水平工作。随着并发级别的增加,舍入误差对数值再现性的影响也会增加,最终影响科学模拟再现程序执行和数值结果的能力。在这种情况下,不可重现的结果可能不被期望可重现行为的科学界所信任,任何追求可重现性的尝试都可能以过高的性能为代价。这个“高风险-高回报”项目研究了在尖端多核架构中,当并发执行突发和工作流确定性消失时,舍入误差对结果可重现性的影响。为此,该项目采用一种称为“复合精度浮点运算”的数学方法对科学应用中的舍入误差进行建模,并展示了这种方法如何减轻误差漂移。 在前期工作中使用的基准测试套件进行了扩展,以涵盖更大范围的应用程序的模式,并用于评估新一代多核架构的复合精度的缓解影响。最后,该项目量化了所提出的方法的成本和缓解因素,以缓解不同基准和平台的误差传播。该项目将通过开发和推广有效的软件解决方案,为广泛的应用程序及其代码在大规模并行环境下以高度并发执行时的舍入误差传播问题,提高对艾级数值再现性的认识和理解系统.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michela Taufer其他文献
Enhancing Scientific Research with FAIR Digital Objects in the National Science Data Fabric
利用国家科学数据结构中的 FAIR 数字对象加强科学研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michela Taufer;Heberth Martinez;Jakob Luettgau;Lauren Whitnah;G. Scorzelli;P. Newell;Aashish Panta;P. Bremer;Douglas Fils;Christine R. Kirkpatrick;V. Pascucci;Kathryn Mohror;J. Shalf - 通讯作者:
J. Shalf
Integrating FAIR Digital Objects (FDOs) into the National Science Data Fabric (NSDF) to Revolutionize Dataflows for Scientific Discovery
将 FAIR 数字对象 (FDO) 集成到国家科学数据结构 (NSDF) 中,彻底改变科学发现的数据流
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Michela Taufer;Heberth Martinez;Jakob Luettgau;Lauren Whitnah;†. GiorgioScorzelli;†. PaniaNewel;Aashish Panta;Timo Bremer;§. DougFils;¶. ChristineR.Kirkpatrick;Nina McCurdy;V. Pascucci;U. Knoxville;†. U.Utah;R. LLNL ‡;Research Center - 通讯作者:
Research Center
Michela Taufer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michela Taufer', 18)}}的其他基金
EAGER: A Comprehensive Approach for Generating, Sharing, Searching, and Using High-Resolution Terrain Parameters
EAGER:生成、共享、搜索和使用高分辨率地形参数的综合方法
- 批准号:
2334945 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Model-driven Design and Optimization of Dataflows for Scientific Applications
协作研究:SHF:小型:科学应用数据流的模型驱动设计和优化
- 批准号:
2331152 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
SHF: Small: Methods, Workflows, and Data Commons for Reducing Training Costs in Neural Architecture Search on High-Performance Computing Platforms
SHF:小型:降低高性能计算平台上神经架构搜索训练成本的方法、工作流程和数据共享
- 批准号:
2223704 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Elements: SENSORY: Software Ecosystem for kNowledge diScOveRY - a data-driven framework for soil moisture applications
协作研究:要素:SENSORY:知识发现的软件生态系统 - 土壤湿度应用的数据驱动框架
- 批准号:
2103845 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
- 批准号:
2028923 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Advancing Reproducibility in Multi-Messenger Astrophysics
合作研究:EAGER:提高多信使天体物理学的可重复性
- 批准号:
2041977 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: ANACIN-X: Analysis and modeling of Nondeterminism and Associated Costs in eXtreme scale applications
SHF:中:协作研究:ANACIN-X:极端规模应用中的非确定性和相关成本的分析和建模
- 批准号:
1900888 - 财政年份:2019
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Collaborative: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作:EAGER:探索和推进引力波物理学稳健科学的最新技术
- 批准号:
1841399 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作:EAGER:探索和推进引力波物理学稳健科学的最新技术
- 批准号:
1823372 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
SHF:Medium:Collaborative Research:A comprehensive methodology to pursue reproducible accuracy in ensemble scientific simulations on multi- and many-core platforms
SHF:中:协作研究:在多核和众核平台上追求集合科学模拟的可重复精度的综合方法
- 批准号:
1841552 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似国自然基金
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
- 批准号:41340011
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Assessment of climate change impact on permafrost using numerical model
使用数值模型评估气候变化对永久冻土的影响
- 批准号:
22KF0425 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of a numerical propagation model for debris flow and flood flow considering flow blockages by large boulders and woody debris and its application for spatial assessment on damage risks
考虑大石块和木质碎片堵塞的泥石流和洪水流数值传播模型的开发及其在损害风险空间评估中的应用
- 批准号:
22K14454 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel experimental and numerical techniques for efficient earthquake safety assessment of critical dam infrastructure
用于对关键大坝基础设施进行有效地震安全评估的新颖实验和数值技术
- 批准号:
RGPIN-2017-06891 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Discovery Grants Program - Individual
CAREER: An Integrated Experimental and Numerical Vulnerability Assessment of Aging Housing Infrastructure and Communities
职业:老化住房基础设施和社区的综合实验和数值脆弱性评估
- 批准号:
2142337 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Assessment of Residual Strength of Tailings Using the Cone Penetration Test and Simplified Numerical Modelling
使用锥入度试验和简化数值模型评估尾矿的剩余强度
- 批准号:
537738-2018 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Collaborative Research and Development Grants
Novel experimental and numerical techniques for efficient earthquake safety assessment of critical dam infrastructure
用于对关键大坝基础设施进行有效地震安全评估的新颖实验和数值技术
- 批准号:
RGPIN-2017-06891 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Discovery Grants Program - Individual
Numerical Assessment of a New Modular Steel Beam-to-Column Connection
新型模块化钢梁柱连接的数值评估
- 批准号:
554216-2020 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
University Undergraduate Student Research Awards
A hybrid numerical-experimental methodology for robust assessment of automotive brake system noise
用于稳健评估汽车制动系统噪声的混合数值实验方法
- 批准号:
526364-2018 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Collaborative Research and Development Grants
Novel experimental and numerical techniques for efficient earthquake safety assessment of critical dam infrastructure
用于对关键大坝基础设施进行有效地震安全评估的新颖实验和数值技术
- 批准号:
RGPIN-2017-06891 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Discovery Grants Program - Individual
Development and application of a numerical model for fatigue performance assessment of UHPFRC-repaired RC bridge decks
UHPFRC修复RC桥面板疲劳性能评估数值模型的开发与应用
- 批准号:
20K14808 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




