Collaborative Research: Improved Ionospheric Source Models for Imaging Upper Mantle-Transition Zone Resistivity
合作研究:用于上地幔过渡带电阻率成像的改进电离层源模型
基本信息
- 批准号:1446856
- 负责人:
- 金额:$ 8.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Daily variations of Earth's magnetic field result primarily from electric currents flowing above us in the ionosphere, at heights of about 100-150 km, with a secondary component due to currents induced below us in the deep interior of the electrically conducting Earth. This is a collaborative project, bringing solid Earth and ionospheric scientists together in an effort to better understand and separate the two current sources. A primary motivation for this effort is to improve understanding of the smaller and subtler internal component, and thence improve the ability to image electrical conductivity variations deep (200-700 km) in the Earth. Conductivity of rocks at these depths is highly sensitive to even small amounts of water, so these images will ultimately allow estimates the amount and distribution of water in the deep Earth, and improve understanding of deep Earth water cycles. These results will have important implications to a number of scientific fields, including the dynamics and evolution of the Earth and evolution of the oceans. The crucial step in this study is to significantly improve models of the external ionospheric component of the magnetic field. Such magnetic field models have many potentially important applications to basic and applied scientific research in geomagnetism and space physics. Ultimately they will be useful in applications of direct societal relevance where the knowledge of an accurate magnetic field is required, including navigation, orientation of solar arrays, and geophysical exploration for natural resources.In conjunction with recent laboratory results on electrical conductivity of mantle minerals, improved imaging of electrical conductivity in Earth's mantle will provide valuable new information about water in the mantle, with potentially profound implications for mantle rheology, and for the dynamics and geochemical evolution of the Earth. Information about deep Earth resistivity comes almost exclusively from observations of long-period geomagnetic variations observed on Earth's surface--the sum of external fields due to ionospheric and magnetospheric current systems, and internal fields due to currents induced in the conducting Earth. Frequencies of 0.5-10 cycles per day (cpd) are most relevant to imaging through the aesthenosphere and into the transition zone, and these variations mostly have their origin in the ionospheric dynamo region at 100-150 km height. These ionospheric currents depend on the spatial and temporal varying thermospheric neutral wind and the ionospheric conductivity distribution. To reliably interpret the relatively subtle induced signals indicative of Earth conductivity variations, these spatially complex ionospheric magnetic field signals must be properly accounted. This project attacks this challenging problem through collaboration between specialists in EM induction imaging and experts in ionospheric physics and modeling. Spatial structure of external source and internal conductivity variations will be estimated simultaneously, using a large collection of ground-based geomagnetic array data from both historical and modern eras. There are two novel components to the proposed approach. First, a robust Principal Components Analysis (PCA) scheme is used for initial data reduction. This PCA scheme massively reduces the number of data (and thus the number of independent source parameters required), and allows data from different eras to be merged, thus significantly increasing data coverage. Second, the source modeling is tightly constrained through the use of a mature physics based numerical model for ionospheric currents, the Thermosphere-Ionosphere-Mesosphere-Electrodynamics general Circulation Model (TIME-GCM). In addition to the team's immediate application to improved EM induction imaging, these efforts may provide significant benefits to the ionospheric and broader geomagnetic communities. For example, the project includes detailed comparison between TIME-GCM outputs and a large collection of ground geomagnetic data, providing insight into strengths and weaknesses of this numerical model. More broadly, approaches developed for incorporating ground-based data into time dependent models of ionospheric magnetic fields will benefit a range of basic and applied studies of Earth's magnetic field.
地球磁场的每日变化主要是由于在我们上方的电离层中流动的电流,高度约为100-150公里,其次是由于我们下方导电地球内部深处感应的电流。这是一个合作项目,将固体地球和电离层科学家聚集在一起,努力更好地理解和分离这两个电流源。这项工作的主要动机是提高对更小和更微妙的内部成分的理解,从而提高对地球深处(200-700公里)电导率变化的成像能力。 这些深度的岩石的电导率对即使是少量的水也非常敏感,因此这些图像最终将允许估计地球深部的水量和分布,并提高对地球深部水循环的理解。 这些结果将对若干科学领域产生重要影响,包括地球的动力学和演变以及海洋的演变。 这项研究的关键一步是大大改进磁场电离层外部分量的模型。 这种磁场模型在地磁学和空间物理学的基础和应用科学研究中有许多潜在的重要应用。最终,它们将在需要精确磁场知识的直接社会相关应用中有用,包括导航、太阳能电池阵列的定向和自然资源的地球物理勘探。结合最近关于地幔矿物电导率的实验室结果,改进的地幔电导率成像将提供有关地幔中水的宝贵新信息,对地幔流变学、地球动力学和地球化学演化具有潜在的深远意义。关于地球深部电阻率的信息几乎完全来自对地球表面长周期地磁变化的观测-电离层和磁层电流系统产生的外部场与导电地球感应电流产生的内部场的总和。0.5-10周/天(cpd)的频率与穿过大气层进入过渡带的成像最相关,这些变化主要起源于100-150公里高度的电离层发电机区域。这些电离层电流取决于时空变化的热层中性风和电离层电导率分布。为了可靠地解释指示地球电导率变化的相对微妙的感应信号,这些空间复杂的电离层磁场信号必须被正确地解释。该项目通过电磁感应成像专家与电离层物理学和建模专家之间的合作来解决这一具有挑战性的问题。外部源和内部电导率变化的空间结构将同时估计,使用大量收集的地面地磁阵列数据从历史和现代。所提出的方法有两个新的组成部分。首先,一个强大的主成分分析(PCA)计划用于初始数据减少。这种PCA方案大大减少了数据的数量(从而减少了所需的独立源参数的数量),并允许合并来自不同时代的数据,从而显着增加数据覆盖率。其次,通过使用一个成熟的物理为基础的电离层电流的数值模式,热层电离层中间层电动力学环流模式(TIME-GCM)的源模型是严格约束。 除了该团队立即应用于改进EM感应成像之外,这些努力可能会为电离层和更广泛的地磁社区提供显着的好处。 例如,该项目包括详细比较TIME-GCM输出和大量地面地磁数据,从而深入了解该数值模型的优点和缺点。 更广泛地说,为将地面数据纳入电离层磁场随时间变化的模型而开发的方法将有利于对地球磁场的一系列基础和应用研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Astrid Maute其他文献
Responses of the Mean Thermosphere Circulation, O/N2 Ratio and Ne to Solar and Magnetospheric Forcing From Above and Tidal Forcing From Below
平均热层环流、O/N2 比和 Ne 对来自上方的太阳和磁层强迫以及来自下方的潮汐强迫的响应
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
J. Forbes;Xiaolin Zhang;Astrid Maute;C. Cullens - 通讯作者:
C. Cullens
Quasi 6‐Day Planetary Wave Oscillations in Equatorial Plasma Irregularities
赤道等离子体不规则性中的准六日行星波振荡
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
N. Pedatella;Ercha Aa;Astrid Maute - 通讯作者:
Astrid Maute
Quiet-time Day-to-day Variability of Equatorial Vertical E×B Drift from Atmosphere Perturbations at Dawn
黎明时大气扰动引起的赤道垂直 E_B 漂移的安静时间日常变化
- DOI:
10.1029/2020ja027824 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Xu Zhou;Han‐Li Liu;Xian Lu;Ruilong Zhang;Astrid Maute;Haonan Wu;Xinan Yue;Weixing Wan - 通讯作者:
Weixing Wan
Thermosphere-Ionosphere-Electrodynamics General Circulation Model for the Ionospheric Connection Explorer: TIEGCM-ICON
- DOI:
10.1007/s11214-017-0330-3 - 发表时间:
2017-04-03 - 期刊:
- 影响因子:7.400
- 作者:
Astrid Maute - 通讯作者:
Astrid Maute
$F$ -Region Dynamo Simulations at Low and Mid-Latitude
- DOI:
10.1007/s11214-016-0262-3 - 发表时间:
2016-07-12 - 期刊:
- 影响因子:7.400
- 作者:
Astrid Maute;Arthur D. Richmond - 通讯作者:
Arthur D. Richmond
Astrid Maute的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Astrid Maute', 18)}}的其他基金
Collaborative Research: CEDAR--A Whole-Atmospheric Perspective on Connections between Intra-Seasonal Variations in the Troposphere and Thermosphere
合作研究:CEDAR——对流层和热层季节内变化之间联系的整体大气视角
- 批准号:
2332817 - 财政年份:2023
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: CEDAR--A Whole-Atmospheric Perspective on Connections between Intra-Seasonal Variations in the Troposphere and Thermosphere
合作研究:CEDAR——对流层和热层季节内变化之间联系的整体大气视角
- 批准号:
2113412 - 财政年份:2021
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: CEDAR--Assimilative Analysis of Low- and Mid-latitude Ionospheric Electrodynamics
合作研究:CEDAR--低纬度和中纬度电离层电动力学同化分析
- 批准号:
1651411 - 财政年份:2017
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314272 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314270 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314271 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314273 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Geochronology-Based Sediment Provenance Analysis Through Physico-Mechanical Characterization of Zircon Transport
合作研究:通过锆石运移的物理机械表征改进基于地质年代学的沉积物物源分析
- 批准号:
2314016 - 财政年份:2023
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229471 - 财政年份:2023
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229473 - 财政年份:2023
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: A New 3-D Velocity and Structural Model of the Northern Basins in the Los Angeles Region for Improved Ground Motion Estimates
合作研究:洛杉矶地区北部盆地的新 3D 速度和结构模型,用于改进地震动估计
- 批准号:
2317154 - 财政年份:2023
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229472 - 财政年份:2023
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: Towards improved imaging of the outermost core through determination of the effects of lowermost mantle heterogeneity and anisotropy
合作研究:通过确定最低地幔异质性和各向异性的影响来改善最外层地核的成像
- 批准号:
2307537 - 财政年份:2022
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant