EAGER: Conditional Risk Measures for Reducing Cascading Failures
EAGER:减少级联故障的条件风险措施
基本信息
- 批准号:1451047
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2015-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In an interdependent system (e.g., power grids and financial markets), an undesirable event could spread and cause even more severe economic and/or social consequences, also known as cascading failures. Typical examples include the blackout in Northeastern America triggered by a tripped transmission line in 2003, and the recent global recession stemming from the U.S. subprime mortgage market. To protect an interdependent system, a system operator need to better understand the threats of cascading failures when undesirable conditions are realized, and accordingly make better operational and recourse plans. This award supports exploratory research to study conditional risk measures on quantifying the threats of cascading failures, and show how they can help improve operational decision makings in many practical applications. The successful implementation of this project will provide effective decision support tools for system operators to identify cascading failures and reduce potential impacts. At meanwhile, this project will provide new teaching materials for undergraduate- and graduate-level courses on related research topics. Underrepresented Ph.D. students will be motivated to participate in the research and educational activities. This project aims to explore a class of conditional risk measures which generalize many classical risk measures including the Conditional Value-at-Risk. Because of the quotient expressions and the distributional ambiguity, it is technically challenging to incorporate these conditional risk measures in stochastic optimization models. This project will explore reformulation and approximation approaches in a data-driven context. More specifically, distributional robust versions of the conditional risk measures and their reformulations under various distributional ambiguity settings will be explored, sample approximations of the conditional risk measures based on available historical data will be investigated, and effective solution algorithms to handle the conditional risk measures will be formulated. The successful completion of this project will lead to new knowledge in the stochastic optimization literature, including functional optimization analyses, the value of historical data, and cutting planes for stochastic integer programs.
在一个相互依赖的系统中(例如,电网和金融市场),不良事件可能蔓延并导致甚至更严重的经济和/或社会后果,也称为级联故障。典型的例子包括2003年由输电线路跳闸引发的美国东北部停电,以及最近由美国次级抵押贷款市场引发的全球经济衰退。为了保护一个相互依赖的系统,系统运营商需要更好地了解级联故障的威胁时,实现不良条件,并相应地制定更好的操作和补救计划。该奖项支持探索性研究,研究量化级联故障威胁的条件风险措施,并展示它们如何在许多实际应用中帮助改善运营决策。该项目的成功实施将为系统运营商提供有效的决策支持工具,以识别级联故障并减少潜在影响。同时,该项目将为相关研究课题的本科和研究生课程提供新的教材。博士学位不足鼓励学生参与研究及教育活动。本项目旨在探讨一类条件风险度量,它推广了包括条件风险价值在内的许多经典风险度量。由于商表达式和分布模糊性,将这些条件风险度量纳入随机优化模型在技术上具有挑战性。这个项目将探索在数据驱动的背景下的重新制定和近似方法。更具体地说,分布鲁棒版本的条件风险措施和他们的重新制定下各种分布模糊设置将进行探讨,样本近似的条件风险措施的基础上,现有的历史数据将进行调查,有效的解决方案算法来处理的条件风险措施将制定。该项目的成功完成将导致随机优化文献中的新知识,包括函数优化分析,历史数据的价值,以及随机整数规划的切割平面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruiwei Jiang其他文献
Activating transcription factor 3 promotes embryo attachment via up-regulation of leukemia inhibitory factor in vitro
- DOI:
10.1186/s12958-017-0260-7. - 发表时间:
2017 - 期刊:
- 影响因子:
- 作者:
Xi Cheng;Jingyu Liu;Huizhi Shan;Lihua Sun;Chenyang Huang;Qiang Yan;Ruiwei Jiang;Lijun Ding;Yue Jiang;Jianjun Zhou;Guijun Yan;Haixiang Sun - 通讯作者:
Haixiang Sun
Distributionally Robust Chance Constrained Optimal Power Flow Assuming Log-Concave Distributions
假设对数凹分布的分布鲁棒机会约束最优潮流
- DOI:
10.23919/pscc.2018.8442927 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Bowen Li;J. Mathieu;Ruiwei Jiang - 通讯作者:
Ruiwei Jiang
An O(N2)-time algorithm for the stochastic uncapacitated lot-sizing problem with random lead times
具有随机交付时间的随机无容量批量问题的 O(N2) 时间算法
- DOI:
10.1016/j.orl.2010.10.004 - 发表时间:
2011 - 期刊:
- 影响因子:1.1
- 作者:
Ruiwei Jiang;Yongpei Guan - 通讯作者:
Yongpei Guan
Distribution System Operation Amidst Wildfire-Prone Climate Conditions Under Decision-Dependent Line Availability Uncertainty
决策相关的线路可用性不确定性下,在易发生野火的气候条件下配电系统的运行
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:6.6
- 作者:
Alexandre Moreira;Felipe Piancó;Bruno Fanzeres;A. Street;Ruiwei Jiang;Chaoyue Zhao;M. Heleno - 通讯作者:
M. Heleno
MULTI-COPPER FERROXIDASES PLAY AN IMPORTANT ROLE IN BRAIN IRON METABOLISM
多铜铁氧化酶在脑铁代谢中发挥重要作用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:12.8
- 作者:
Ruiwei Jiang;Mengxia Chen;iashuo Zheng;Huijun Chen - 通讯作者:
Huijun Chen
Ruiwei Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruiwei Jiang', 18)}}的其他基金
Understanding the Impacts of COVID-19 Pandemic on Human Mobility, Transportation Network Redesign and System Resilience
了解 COVID-19 大流行对人员流动、交通网络重新设计和系统弹性的影响
- 批准号:
2041745 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Incorporating Decision-Dependent Uncertainty via Distributionally Robust Optimization: Models, Solution Approaches, and Applications
职业:通过分布稳健优化纳入决策相关的不确定性:模型、解决方案和应用
- 批准号:
1845980 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Enhancing Power System Resilience via Data-Driven Optimization
协作研究:通过数据驱动优化增强电力系统的弹性
- 批准号:
1662774 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Conditional Risk Measures for Reducing Cascading Failures
EAGER:减少级联故障的条件风险措施
- 批准号:
1555983 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
AIGMob: Conditional Generative AI for Fine-grained Urban Mobility Simulation
AIGMob:用于细粒度城市交通模拟的条件生成人工智能
- 批准号:
24K02996 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Regularization for Nonlinear Panel Models, Estimation of Heterogeneous Taxable Income Elasticities, and Conditional Influence Functions
非线性面板模型的正则化、异质应税收入弹性的估计和条件影响函数
- 批准号:
2242447 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
A suite of conditional mouse models for secretome labeling
一套用于分泌蛋白组标记的条件小鼠模型
- 批准号:
10640784 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Conditional male lethal Anopheles stephensi line for the efficient manufacture of malaria vaccines
用于高效生产疟疾疫苗的条件性雄性致死史氏按蚊品系
- 批准号:
10602811 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Generating a novel conditional knockout mouse for a super-enhancer that controls cytokine responsiveness
生成一种新型条件敲除小鼠,用于控制细胞因子反应的超级增强子
- 批准号:
10740932 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Cis-regulation and conditional chromatin remodeling in development and evolution of ontogenies in horned beetles
角甲虫个体发育和进化中的顺式调节和条件染色质重塑
- 批准号:
2243725 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Development of a conditional ataxin-1 knockout mouse line
条件性ataxin-1基因敲除小鼠品系的开发
- 批准号:
10642313 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Non Magnetic MRI Conditional External Defibrillator with Reduced Skeletal Muscle Contraction
减少骨骼肌收缩的非磁 MRI 条件性体外除颤器
- 批准号:
10698845 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Subcube Conditional Samples And Testing Properties Of Probability Distributions
子立方条件样本和概率分布的测试属性
- 批准号:
EP/Y001680/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Development of deconvolution method for bulk RNA-Seq by conditional variational autoencoder
通过条件变分自动编码器开发批量 RNA-Seq 的反卷积方法
- 批准号:
23K11302 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)