CAREER: Experimental Investigation For the Characterization of the Geophysical Response of Rock-Fluid Interactions

职业:岩石-流体相互作用地球物理响应表征的实验研究

基本信息

  • 批准号:
    1451345
  • 负责人:
  • 金额:
    $ 53.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-01-15 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This is a time when our nation must think strategically, and globally, about how to use the resources of our planet. An important task is to predict the changes that this use will cause, so we can act wisely while flourishing as a community. The mechanical and chemical interactions of fluids throughout the earth's crust are believed to drive many geological and anthropogenic processes, the ramifications of which raise major societal concerns, from contaminating ground and surface water to triggering seismic activity and deformation. Time-lapse monitoring with seismic methods is an effective approach to recognize such variations in physical properties in the ground. However, quantitative interpretation of such data is not reliable for predicting changes that result from complex, dynamic interactions of thermal, chemical, and mechanical processes due to lack of fundamental laboratory data. Current models for the seismic response to pore fluid changes stem from a purely mechanical approach, which is inadequate for predicting the effects of coupled physical and chemical alterations. This is a challenging problem, because of its complexity and multi-disciplinary nature. A major shift is required in the way experiments are conceived so to dynamically track changes both in the rock and the fluid, and how they feedback upon each other. To succeed students also need to be trained across multi-disciplines as well as the design and operation of laboratory instruments-this task can be a mission by itself. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. The objective of this project is thus twofold. It leverages research by integrating innovative experiments that simulate earth conditions and chemo-mechanical processes with a combination of measurements and computations on 3D printed models of CT-scanned rocks. The project also aims to broaden education opportunities through the creation of an online laboratory that can facilitate the process of learning experimental techniques and adapt its content to the high-tech student's lifestyle. The virtual laboratory reproduces in form and function the PI research laboratory at Stanford University through interactive, 3-D animated renderings of instruments used in a geophysics laboratory that students can virtually assemble and operate. The objective is to build the necessary infrastructure allowing students to appreciate more easily the dual functions of laboratory systems: learning what these systems do and how they work, and actually using them for future research endeavors. The project will provide fertile ground for a series of new technologies and cyber capabilities both in classes and research and help turn the complexity of laboratory work into dexterity, engagement, and expanded learning opportunities to anyone, anywhere. The overall goal is to make it possible to teach introductory laboratory classes in geoscience facilities lacking research laboratories and raise awareness of professional practices among early-stage or inexperienced students so that they can hit the ground running and efficiently take on the challenge of becoming future geoscientists.Whether the goal is fluid disposal or storage, the thermal and chemical stimulation of reservoirs, or healing or weakening processes across geothermal and seismogenic areas, real-time geophysical monitoring is emerging as a way to rapidly control processes at depth and turn data observations into decisions. The proposed research aims to improve our fundamental understanding of how to decipher changes in the earth's crust due to fluid movement and rock-fluid interactions using remote geophysical monitoring methods. Currently, quantitative interpretation of 4-D seismic data is not successful for predicting the behavior of dynamic systems underlying thermo-chemo-mechanical processes, because we lack fundamental laboratory data. Conventional laboratory experiments as well as models for seismic signatures of pore fluid changes stem from a purely mechanical approach, which is inadequate for predicting the effects of reactive transport fluids on the microstructural properties of the rock skeleton-the pore space of the rock deforms chemo-mechanically while the fluid reacts and flows through a deforming pore space. The innovative aspect of this proposal is to interlace the rock elastic properties with deformation and reactive transport flow through basic-science experimentation and multi-scale imaging. The proposed research will use laboratory experiments and time-lapse, multi-scale imaging to track both geochemical (fluid chemistry and flow, mass balance, pH) and physical parameters (transport and elastic properties, pressure buildup, dissolution-driven strain) in rocks during chemo-mechanical processes. This research will advance our knowledge by (a) measuring chemical and physical quantities continuously and simultaneously to truly couple cause and effect in the time domain and (b) complementing the experimental measurements with time-lapse, multi-scale imaging techniques to correlate the trends in the geophysical observables with the spatial changes occurring in the rock. The education component of the project leverages a current PI project to create a virtual laboratory through interactive, 3-D animated renderings of rock-physics instruments for the geophysics community. Complementing time-consuming high-pressure/high-temperature experiments and time-lapse imaging with the 3D printing of actual rock models is a way to open research to innovative tools, and possibly, to new learning perspectives through the skills of the high-tech students of this nation and abroad.
这是一个我们国家必须从战略上和全球角度思考如何利用地球资源的时候。一个重要的任务是预测这种使用将导致的变化,这样我们就可以在作为一个社区蓬勃发展的同时明智地采取行动。整个地壳中流体的机械和化学相互作用被认为驱动了许多地质和人为过程,其后果引起了重大的社会问题,从污染地下水和地表水到触发地震活动和变形。利用地震方法进行时移监测是识别这种地下物理性质变化的有效方法。然而,由于缺乏基本的实验室数据,这些数据的定量解释是不可靠的预测变化,从复杂的,动态的相互作用的热,化学和机械过程。目前的模型地震响应孔隙流体变化源于一个纯粹的机械方法,这是不足以预测耦合的物理和化学变化的影响。这是一个具有挑战性的问题,因为它的复杂性和多学科的性质。一个重大的转变是需要在实验的方式设想,以便动态跟踪岩石和流体的变化,以及它们如何相互反馈。为了取得成功,学生还需要接受跨学科的培训,以及实验室仪器的设计和操作-这项任务本身就是一项使命。实验研究是科学探究不可或缺的要素,必须在当代和未来几代科学家的决策中发挥核心作用。因此,该项目的目标是双重的。它通过将模拟地球条件和化学机械过程的创新实验与CT扫描岩石的3D打印模型的测量和计算相结合来利用研究。该项目还旨在通过创建一个在线实验室来扩大教育机会,该实验室可以促进学习实验技术的过程,并使其内容适应高科技学生的生活方式。虚拟实验室通过交互式三维动画再现了斯坦福大学PI研究实验室的形式和功能,学生可以虚拟组装和操作物理实验室中使用的仪器。我们的目标是建立必要的基础设施,让学生更容易地欣赏实验室系统的双重功能:学习这些系统做什么,他们是如何工作的,并实际使用它们为未来的研究工作。该项目将为课堂和研究中的一系列新技术和网络能力提供肥沃的土壤,并帮助将实验室工作的复杂性转化为灵活性,参与度和扩大学习机会。总体目标是使在缺乏研究实验室的地球科学设施中教授入门实验室课程成为可能,并提高早期阶段或缺乏经验的学生对专业实践的认识,使他们能够立即投入工作,有效地接受成为未来地球科学家的挑战。无论目标是流体处理或储存,还是储层的热和化学刺激,随着地热和地震发生区的地震过程的恢复或减弱,实时地球物理监测正在成为一种快速控制深度过程并将数据观测转化为决策的方式。拟议的研究旨在提高我们对如何使用远程地球物理监测方法破译由于流体运动和岩石-流体相互作用而引起的地壳变化的基本理解。目前,由于缺乏基本的实验室数据,四维地震数据的定量解释对于预测热化学机械过程背后的动态系统的行为并不成功。常规的实验室实验以及孔隙流体变化的地震特征模型源于纯力学方法,这不足以预测反应性输送流体对岩石微结构性质的影响岩石的孔隙空间在流体反应并流过变形孔隙空间时发生化学机械变形。该方案的创新之处在于通过基础科学实验和多尺度成像,将岩石弹性性质与变形和反应性输运流相结合。拟议的研究将使用实验室实验和延时,多尺度成像来跟踪化学力学过程中岩石中的地球化学(流体化学和流动,质量平衡,pH值)和物理参数(运输和弹性特性,压力建立,溶解驱动的应变)。这项研究将推进我们的知识,(a)连续测量化学和物理量,同时真正耦合的原因和影响在时域和(B)补充实验测量与时间推移,多尺度成像技术相关的趋势,在地球物理观测的空间变化发生在岩石。该项目的教育部分利用目前的PI项目,通过岩石物理学社区的岩石物理仪器的交互式3D动画效果图创建一个虚拟实验室。将耗时的高压/高温实验和延时成像与实际岩石模型的3D打印相结合,是一种将研究开放给创新工具的方法,也可能是通过国内外高科技学生的技能实现新的学习视角的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tiziana Vanorio其他文献

A Deep-Learning P-Wave Arrival Picker for Laboratory Acoustic Emissions: Model Training and Its Performance
  • DOI:
    10.1007/s00603-024-04296-5
  • 发表时间:
    2024-12-08
  • 期刊:
  • 影响因子:
    6.600
  • 作者:
    Tian Yang Guo;Tiziana Vanorio;Jihui Ding
  • 通讯作者:
    Jihui Ding

Tiziana Vanorio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tiziana Vanorio', 18)}}的其他基金

Physical and Mechanical Response of the Cementation of Aluminosilicate Seals
硅铝酸盐密封胶结的物理和机械响应
  • 批准号:
    2149529
  • 财政年份:
    2022
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Standard Grant
Collaborative Research: GP-IN: Connected to Earth: Cross-Cultural Knowledge Exchange for Advancing Earth Science Learning
合作研究:GP-IN:连接地球:跨文化知识交流促进地球科学学习
  • 批准号:
    2119008
  • 财政年份:
    2021
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Experimental Investigation into the Impact of Incoming Boundary Layer State on the Unsteady Dynamics of a Transverse Jet in a Hypersonic Crossflow
职业:高超声速横流中传入边界层状态对横向射流非定常动力学影响的实验研究
  • 批准号:
    2239156
  • 财政年份:
    2023
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Continuing Grant
CAREER: Experimental Investigation of the Transport Properties of Sulfide Melts at Upper Mantle Conditions
职业:上地幔条件下硫化物熔体输运特性的实验研究
  • 批准号:
    2150829
  • 财政年份:
    2021
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Continuing Grant
CAREER: Experimental Investigation of Morphogenesis and Locomotion of Multicellular Magnetotactic Bacteria
职业:多细胞趋磁细菌形态发生和运动的实验研究
  • 批准号:
    2042150
  • 财政年份:
    2021
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Continuing Grant
CAREER: Experimental Investigation of Viscous Anisotropy of Foliated Rocks: Implications to the Strength of the Mid to Lower Continental Crust
职业:叶状岩石粘性各向异性的实验研究:对中下大陆地壳强度的影响
  • 批准号:
    1848380
  • 财政年份:
    2019
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Continuing Grant
CAREER: Experimental investigation of deformation and slip behaviors of subduction megathrust rocks
职业:俯冲巨型逆冲岩石变形和滑移行为的实验研究
  • 批准号:
    1848420
  • 财政年份:
    2019
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Continuing Grant
CAREER: Experimental Investigation of the Transport Properties of Sulfide Melts at Upper Mantle Conditions
职业:上地幔条件下硫化物熔体输运特性的实验研究
  • 批准号:
    1750746
  • 财政年份:
    2018
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Continuing Grant
CAREER: Experimental and Theoretical Investigation of the Electrodynamics and Structuring of the Low-latitude Ionosphere
职业:低纬度电离层电动力学和结构的实验和理论研究
  • 批准号:
    1554926
  • 财政年份:
    2016
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Continuing Grant
CAREER: Experimental and Theoretical Investigation of Sediment Supply and Sorting in Meandering Rivers
职业:曲流河流泥沙供应和分类的实验和理论研究
  • 批准号:
    1455259
  • 财政年份:
    2015
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Continuing Grant
CAREER: Experimental Investigation of Indentation-Induced Two-Way Shape-Memory Surfaces Made From Nickel-Titanium Alloys
职业:由镍钛合金制成的压痕诱导双向形状记忆表面的实验研究
  • 批准号:
    1255603
  • 财政年份:
    2013
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Standard Grant
CAREER: An experimental and numerical investigation of the biophysical processes of pulsed electric field induced irreversible electroporation for Glioblastoma Multiforme
职业:脉冲电场诱导不可逆电穿孔治疗多形性胶质母细胞瘤的生物物理过程的实验和数值研究
  • 批准号:
    1055913
  • 财政年份:
    2011
  • 资助金额:
    $ 53.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了