CAREER: Effective Field Theories from String Compactification
职业:弦紧化的有效场论
基本信息
- 批准号:1452037
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award funds the research activities of Professor Jonathan Heckman at the University of North Carolina (UNC)at Chapel Hill. This research will focus on using string theory to understand the workings of Nature at the shortest distance scales. Strings continue to have significant impact on theoretical physics, with interdisciplinary connections ranging from the physics of subatomic particles to pure mathematics. One of the most important open issues is how to connect this framework to experimentally verified theories of subatomic particles. This project aims to use the geometry of extra dimensions predicted by string theory to construct and study theoretical models of relevance both for theories of subatomic particles, and for more formal mathematical applications.The education and outreach efforts of this program will introduce students to the power of geometric methods in theoretical physics. 1) At the postdoc and graduate level, the PI will maintain a collaborative research environment. 2) The PI will develop a course on geometric methods in high energy theory. 3) At the undergraduate level, the PI will advise students on geometric and computational aspects of string theory through the UNC REU program on computational methods in physics held in his department. 4) The PI will work closely with the Morehead Planetarium and Science Center to develop a set of outreach modules aimed at conveying the broad range of energy scales which are actively being investigated by high energy theorists and experimentalists.The technical components of this program will focus on the development of new tools in the study of string compactification at strong coupling, and the resulting low energy effective field theories. Particular emphasis will be placed on compactifications of F-theory. This will entail developing the correspondence between the open string degrees of freedom in the worldvolume theory of intersecting seven-branes, and closed string degrees of freedom captured by elliptically fibered Calabi-Yau manifolds. Additional components will entail the development of specific string-motivated scenarios for physics beyond the Standard Models of particle physics and cosmology. Particle physics applications will include the study of kinetic mixing with a strongly coupled extra sector. Cosmology applications will include the development of inflationary reheating scenarios coupled to concrete stringy particle physics models. This project will also focus on using the geometry of F-theory compactifications as a tool to classify and study superconformal field theories (SCFTs) in diverse dimensions. This will include a classification of 6D SCFTs, the construction of new 4D N = 1 SCFTs from D3-brane probes of singular Calabi-Yau fourfold geometries, and the development of 2D SCFTs with N = (0,2) supersymmetry from compactification on singular elliptically fibered Calabi-Yau fivefolds.
该奖项资助了查佩尔山的北卡罗来纳州大学的乔纳森·赫克曼教授的研究活动。这项研究的重点是使用弦理论来理解自然界在最短距离尺度上的运作。弦继续对理论物理学产生重大影响,从亚原子粒子物理学到纯数学都有跨学科的联系。最重要的开放问题之一是如何将这个框架与实验验证的亚原子粒子理论联系起来。该项目旨在利用弦论预测的额外维度的几何学来构建和研究与亚原子粒子理论和更正式的数学应用相关的理论模型。该项目的教育和推广工作将向学生介绍几何方法在理论物理中的力量。1)在博士后和研究生阶段,PI将保持一个合作研究的环境。2)PI将开发一门关于高能理论中几何方法的课程。3)在本科阶段,PI将通过他所在系的物理学计算方法研究项目,为学生提供弦理论的几何和计算方面的建议。4)PI将与Morehead天文馆和科学中心密切合作,开发一套外展模块,旨在传达高能理论家和实验学家正在积极研究的广泛的能量标度。该计划的技术部分将集中在强耦合弦紧化研究的新工具的开发,以及由此产生的低能有效场论。特别强调将放在紧化的F-理论。这将需要发展相交七膜世界体积理论中的开弦自由度与椭圆纤维卡-丘流形捕获的闭弦自由度之间的对应关系。额外的组件将需要开发特定的字符串驱动的物理场景超出粒子物理学和宇宙学的标准模型。粒子物理学的应用将包括动力学混合与强耦合的额外部门的研究。宇宙学的应用将包括与具体的弦粒子物理模型相结合的暴胀再热情景的发展。这个项目还将侧重于使用F-理论紧化的几何作为工具来分类和研究不同维度的超共形场论(SCFT)。这将包括6D SCFT的分类,新的4D N = 1 SCFT的奇异Calabi-Yau四重几何的D3-膜探针的建设,和发展的二维SCFT与N =(0,2)超对称性从紧化奇异椭圆纤维Calabi-Yau五重。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Heckman其他文献
Jonathan Heckman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Heckman', 18)}}的其他基金
CAREER: Effective Field Theories from String Compactification
职业:弦紧化的有效场论
- 批准号:
1756996 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似海外基金
Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
- 批准号:
24K17055 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effective field theory and Physics Beyond the Standard Model
超越标准模型的有效场论和物理学
- 批准号:
2883677 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
Direct Dark Matter searches in Effective Field Theory framework and Neutron Background suppression in LZ experiment
有效场论框架中的直接暗物质搜索和 LZ 实验中的中子背景抑制
- 批准号:
2888644 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
Postdoctoral Fellowship: MPS-Ascend: "Effective Field Theory Approach to Nuclear Structure for Next Generation of High-Energy Scattering Experiments"
博士后奖学金:MPS-Ascend:“下一代高能散射实验核结构的有效场论方法”
- 批准号:
2316701 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Fellowship Award
Maximising the new physics reach of the LHC through Effective Field Theories
通过有效场论最大化大型强子对撞机的新物理范围
- 批准号:
ST/X004155/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Higher-order corrections for effective field theories
有效场论的高阶修正
- 批准号:
2876651 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
- 批准号:
2310588 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
The algebraic analysis of evanescent operators in effective field theory and their asymptotic behavior
有效场论中倏逝算子的代数分析及其渐近行为
- 批准号:
22KJ1072 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Nuclear Structure and Reactions from Effective Field Theory
有效场论的核结构和反应
- 批准号:
2209184 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Working towards an effective field theory of neural computation
致力于神经计算的有效场论
- 批准号:
545841-2020 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Postgraduate Scholarships - Doctoral