CAREER: A Biomanufactured Platform for Modulating Immune Cell-Bacteria Interactions in the Tumor Microenvironment

职业:调节肿瘤微环境中免疫细胞-细菌相互作用的生物制造平台

基本信息

项目摘要

PI: Behkam, BaharehProposal Number: 1454226Cancer is the second leading cause of death in the U.S., annually claiming over half a million lives. Thus, there is an acute need for improved non-invasive disease diagnostics and more effective drug delivery techniques that minimize toxic side effects. Engineered bacteria have been shown to safely accumulate in tumor tissue with high selectivity and treat cancers that are not responsive to conventional therapies in mouse cancer models. However, clinical success has been rare due to insufficient tumor colonization by bacteria. This is presently attributed to the host immune response, and bacteria-neutrophil interactions in particular have been implicated in several in vivo studies. Nonetheless, interactions of neutrophil and bacteria within the tumor microenvironment remain largely unexplored. This CAREER award focuses on fundamental research in bacteria-neutrophil interactions in a three-dimensional (3D) disease model with the goal of modulating these interactions in order to overcome the immunologic barrier to successful bacteria-based cancer therapy. The proposed CAREER research and education plan has the potential to revolutionize the quality of life by enabling novel cancer treatment pathways, while providing the opportunity to integrate research elements and discoveries into multidisciplinary educational and outreach experiences.The overarching goal of the research component of this CAREER proposal is to biomanufacture a system based on controlled self-assembly of live, attenuated tumor-targeting bacteria with leukotoxin-loaded nanoparticles in order to enable localized control of bacteria-immune cell interactions within the tumor microenvironment. It is hypothesized that controlling intratumoral inflammation through localized modulation of neutrophil-bacteria interactions will enable bacteria to overcome the immunologic barrier to proliferation in viable tumor tissue. Fundamental studies on cell-cell interactions in engineered 3D disease models will be performed and means for controlling such interactions will be developed. The following research objectives will be pursued: (1) Biomanufacture and characterize a first-of-its-kind Nanoscale Bacteria Enabled Immune Modulation System (NanoBEIMS) for localized and in-situ disabling of the immunologic barrier to intratumoral proliferation of bacteria; (2) Investigate the role of the mutual effects of bacteria biofilm formation and neutrophil stimulation in intratumoral colonization of bacteria; and (3) Quantify enhancement in bacterial proliferation in tumors caused by NanoBEIMS-enabled localized depletion of neutrophils. The new knowledge gained through this interdisciplinary effort will provide a unique repertoire of enabling technologies for localized cell-cell interaction modulation, as well as highly-targeted theranostic applications for cancer therapy and beyond. Knowledge of the immune system-bacteria interactions is also critical to elucidating the underpinnings of bacterial oncogenesis and enabling effective cancer immunotherapy as well as bacteria-mediated gene therapy. The main goals of the educational component of this CAREER plan are to enhance recruitment and retention of the socioeconomically disadvantaged and ethnically underrepresented groups in STEM and to prepare future scientists to tackle complex multidisciplinary challenges in biotic/abiotic systems engineering (BASE). To this end, this CAREER proposal will establish a multi-tier plan centered on research-inspired learning. The three major components of the plan include: (1) research and training opportunities for elementary school students and teachers from a rural county in southwest Virginia, (2) web-based interactive learning modules to introduce 9-12 year old children to non-traditional areas in engineering at the national level; (3) multidisciplinary research experience for community college students with special focus on underrepresented undergraduates.
癌症是美国第二大死因,每年夺去50多万人的生命。因此,迫切需要改进非侵入性疾病诊断和更有效的药物输送技术,以尽量减少毒副作用。工程细菌已被证明在肿瘤组织中以高选择性安全地积累,并在小鼠癌症模型中治疗对传统疗法无反应的癌症。然而,由于细菌在肿瘤中的定植不足,临床成功的病例很少。目前,这归因于宿主免疫反应,特别是细菌与中性粒细胞的相互作用已在几项体内研究中得到证实。尽管如此,中性粒细胞和细菌在肿瘤微环境中的相互作用在很大程度上仍未被探索。该职业奖侧重于在三维(3D)疾病模型中细菌-中性粒细胞相互作用的基础研究,目的是调节这些相互作用,以克服免疫屏障,成功实现基于细菌的癌症治疗。拟议的CAREER研究和教育计划有可能通过开辟新的癌症治疗途径来彻底改变生活质量,同时提供将研究元素和发现整合到多学科教育和推广经验中的机会。本CAREER提案的研究部分的总体目标是生物制造一个基于活的、减毒的肿瘤靶向细菌与白细胞毒素负载纳米颗粒的可控自组装的系统,以便在肿瘤微环境中局部控制细菌-免疫细胞相互作用。据推测,通过局部调节中性粒细胞与细菌的相互作用来控制肿瘤内炎症将使细菌能够克服免疫屏障,在活的肿瘤组织中增殖。将在工程三维疾病模型中进行细胞-细胞相互作用的基础研究,并开发控制这种相互作用的方法。以下研究目标将被追求:(1)生物制造和表征第一种纳米细菌激活免疫调节系统(NanoBEIMS),用于局部和原位禁用肿瘤内细菌增殖的免疫屏障;(2)探讨细菌生物膜形成与中性粒细胞刺激在肿瘤内细菌定植中的相互作用;(3)量化nanobeims激活的中性粒细胞局部耗竭对肿瘤细菌增殖的增强作用。通过跨学科的努力获得的新知识将为局部细胞-细胞相互作用调节提供独特的使能技术,以及癌症治疗和其他领域的高靶向治疗应用。免疫系统-细菌相互作用的知识对于阐明细菌致癌的基础和实现有效的癌症免疫治疗以及细菌介导的基因治疗也至关重要。本职业计划教育部分的主要目标是加强STEM中社会经济弱势群体和种族代表性不足群体的招聘和保留,并为未来的科学家做好准备,以应对生物/非生物系统工程(BASE)中复杂的多学科挑战。为此,本CAREER提案将建立一个以研究型学习为中心的多层计划。该计划的三个主要组成部分包括:(1)为弗吉尼亚州西南部农村县的小学生和教师提供研究和培训机会;(2)基于网络的互动学习模块,向9-12岁的儿童介绍国家层面的非传统工程领域;(3)为社区大学学生提供多学科研究经验,特别关注代表性不足的本科生。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Motion Enhanced Multi‐Level Tracker (MEMTrack): A Deep Learning‐Based Approach to Microrobot Tracking in Dense and Low‐Contrast Environments
运动增强型多级跟踪器 (MEMTrack):一种基于深度学习的方法,用于在密集和低对比度环境中跟踪微型机器人
  • DOI:
    10.1002/aisy.202300590
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Sawhney, Medha;Karmarkar, Bhas;Leaman, Eric J.;Daw, Arka;Karpatne, Anuj;Behkam, Bahareh
  • 通讯作者:
    Behkam, Bahareh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bahareh Behkam其他文献

Investigation of Factors on Usability Evaluation of Advanced Driver Assistance System
高级驾驶辅助系统可用性评价因素研究
  • DOI:
    10.11225/jcss.25.310
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Apratim Mukherjee;Jonathan Emanuel Ron;Hooi Ting Hu;Tamako Nishimura;Kyoko Hanawa-Suetsugu;Bahareh Behkam;Yuko Mimori-Kiyosue;Nir Shachna Gov;Shiro Suetsugu;Amrinder Singh Nain;小川有閑;前東晃礼・三輪和久・青木宏文・鈴木達也
  • 通讯作者:
    前東晃礼・三輪和久・青木宏文・鈴木達也

Bahareh Behkam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bahareh Behkam', 18)}}的其他基金

EFRI ELiS: Nano-Bio-Hybrid Living Systems for Airborne Biothreat Detection
EFRI ELiS:用于空气生物威胁检测的纳米生物混合生命系统
  • 批准号:
    2318093
  • 财政年份:
    2023
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
Experimental and Computational Models of Bacteria Transport and Adhesion in the Microvasculature
微血管中细菌运输和粘附的实验和计算模型
  • 批准号:
    2133739
  • 财政年份:
    2021
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
RI: Small: Distributed Network of BacteriaBots
RI:小型:BacteriaBots 分布式网络
  • 批准号:
    1117519
  • 财政年份:
    2011
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了