CAREER: Quantum Light-Matter Interfaces Based on Rare-Earth Ions and Nanophotonics

职业:基于稀土离子和纳米光子学的量子光物质界面

基本信息

  • 批准号:
    1454607
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

Title: Quantum Light-Matter Interfaces Based on Rare-earth-doped Crystals and Nanophotonics for On-chip Storage and Retrieval of Photonic Quantum StatesNon-Technical Description: Information utilized by our society is processed using electrical signals in computer microprocessors, and transmitted long distances using optical signals travelling in fiber networks that form the backbone of the Internet. The performance of these technologies is reaching fundamental limits, so quantum machines are expected to drive the next technological revolution. These machines process information by manipulating the most fundamental properties of atoms and photons, their quantum states. Applications include absolutely secure communications over the Internet, the capability to quickly solve problems like protein folding for drug discovery, and quantum simulation of new materials with extreme properties. Analogous to the current Internet, optical quantum networks will be used to interconnect quantum machines. Quantum networks consist of optical channels where photons travel and nodes where photons are generated, stored and processed using quantum light-matter interfaces. The goal of this research is to develop on-chip light-matter interfaces for storing photons and their quantum states. Depending on the application, the interface could act as a memory where the quantum state is retrieved back into a photon, or the state could be transferred to another quantum device. The interfaces will be implemented using solid-state crystals doped with rare-earth atoms, materials known for their excellent photon storage capability. Established processing techniques from the semiconductor industry will be used to fabricate the light-matter interfaces directly in crystalline chips, thus leading to a scalable platform. The proposed research is situated at the transition between quantum science and quantum engineering. Thus, this project provides an ideal opportunity to educate the general public about this transition, which is happening now, where multiple technologies developed for fundamental quantum science are finding applications in quantum computing, communications and sensing. To reach a broad audience, the principal investigator and members of his group will write articles and develop educational videos that will be posted on scientific blogs. To increase diversity in science and engineering, the research group will be involved in an outreach program with a high school on the Navajo Nation US Indian reservation.Technical description: Quantum light-matter interfaces that reversibly map the quantum state of photons onto the quantum states of atoms, are essential components in the quantum engineering toolbox with applications in quantum communication, computing, and quantum-enabled sensing. The goal of this research is to develop on-chip quantum light-matter interfaces based on nanophotonic resonators fabricated in rare-earth-doped crystals known to exhibit some of the longest optical and spin coherence times in the solid state. The role of nano-scale optical resonators with high quality factors is to enhance the interaction of single photons with small ensembles of rare-earth ions thus enabling compact devices suitable for large-scale integration. The experimental approach merges new nano-fabrication techniques for rare-earth-doped crystals (neodymium doped yttrium orthosilicate), high-resolution laser spectroscopy, and coherent control of atomic quantum states. As a result of this research, the feasibility of developing integrated nanophotonic quantum devices based on rare-earth-doped crystals will be assessed. The optical coherence, the spectral stability and the spin coherence of rare-earth ions embedded in a nano-scale environment will be studied, and techniques for coherent control of their quantum states in on-chip photonic networks will be developed. Optical quantum memories with the smallest footprint to date and their on-chip integration will be demonstrated.This CAREER award is jointly funded by the Electronics, Photonics, and Magnetic Devices (EPMD) Program in the Division of Electrical, Communications and Cyber Systems (ECCS), the Electronic and Photonic Materials (EPM) Program in the Division of Materials Research (DMR), and the Quantum Information Science (QIS) Program in the Division of Physics (PHY).
职务名称:基于稀土掺杂晶体和纳米光子学的量子光-物质界面用于光子量子态的片上存储和检索非技术描述:我们社会所使用的信息使用计算机微处理器中的电信号进行处理,并使用光纤网络中的光信号进行长距离传输,光纤网络构成了互联网的骨干。这些技术的性能正在达到根本性的极限,因此量子机器有望推动下一次技术革命。这些机器通过操纵原子和光子的最基本属性(量子态)来处理信息。应用包括通过互联网进行绝对安全的通信,快速解决药物发现中蛋白质折叠等问题的能力,以及具有极端特性的新材料的量子模拟。与当前的互联网类似,光量子网络将用于连接量子机器。量子网络由光子传播的光通道和使用量子光物质界面产生、存储和处理光子的节点组成。这项研究的目标是开发用于存储光子及其量子态的片上光物质接口。根据应用的不同,接口可以充当存储器,将量子态取回到光子中,或者将状态转移到另一个量子设备中。这些接口将使用掺杂稀土原子的固态晶体来实现,稀土原子是以其出色的光子存储能力而闻名的材料。半导体行业的成熟加工技术将用于直接在晶体芯片中制造光物质界面,从而形成可扩展的平台。该研究处于量子科学和量子工程之间的过渡阶段。因此,该项目提供了一个理想的机会来教育公众了解这一转变,这一转变正在发生,为基础量子科学开发的多种技术正在量子计算、通信和传感领域得到应用。为了接触到更广泛的受众,首席研究员和他的团队成员将撰写文章并制作教育视频,这些视频将发布在科学博客上。为了增加科学和工程的多样性,该研究小组将参与一个外展计划,与纳瓦霍族美国印第安人保留地的一所高中合作。技术描述:量子光-物质界面将光子的量子态可逆地映射到原子的量子态,是量子工程工具箱中的重要组成部分,在量子通信,计算和量子传感中有应用。这项研究的目标是开发基于纳米光子谐振器的片上量子光物质界面,该谐振器在已知的掺杂稀土的晶体中制造,在固态下具有最长的光学和自旋相干时间。 具有高品质因数的纳米级光学谐振器的作用是增强单个光子与稀土离子的小集合体的相互作用,从而使紧凑的设备适合于大规模集成。实验方法融合了稀土掺杂晶体(掺钕硅酸钇),高分辨率激光光谱学和原子量子态的相干控制的新纳米制造技术。作为这项研究的结果,将评估开发基于稀土掺杂晶体的集成纳米光子量子器件的可行性。将研究嵌入纳米尺度环境中的稀土离子的光学相干性、光谱稳定性和自旋相干性,并将开发在片上光子网络中对其量子态进行相干控制的技术。该CAREER奖由电气、通信和网络系统部(ECCS)的电子、光子学和磁器件(EPMD)项目、材料研究部(DMR)的电子和光子材料(EPMD)项目、以及物理学系(PHY)的量子信息科学(QIS)项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei Faraon其他文献

Down-converted photon pairs in a high-Q silicon nitride microresonator
高 Q 值氮化硅微谐振器中的下转换光子对
  • DOI:
    10.1038/s41586-025-08662-3
  • 发表时间:
    2025-03-19
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Bohan Li;Zhiquan Yuan;James Williams;Warren Jin;Adrian Beckert;Tian Xie;Joel Guo;Avi Feshali;Mario Paniccia;Andrei Faraon;John Bowers;Alireza Marandi;Kerry Vahala
  • 通讯作者:
    Kerry Vahala
Quantum thermalization and Floquet engineering in a spin ensemble with a clock transition
具有时钟跃迁的自旋系综中的量子热化和 Floquet 工程
  • DOI:
    10.1038/s41567-025-02943-4
  • 发表时间:
    2025-07-09
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Mi Lei;Rikuto Fukumori;Chun-Ju Wu;Edwin Barnes;Sophia E. Economou;Joonhee Choi;Andrei Faraon
  • 通讯作者:
    Andrei Faraon
Advances in optical metalenses
光学超表面的进展
  • DOI:
    10.1038/s41566-022-01108-6
  • 发表时间:
    2022-12-22
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Amir Arbabi;Andrei Faraon
  • 通讯作者:
    Andrei Faraon
Planar retroreflector
平面后向反射器
Near-infrared hybrid quantum photonic interface for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msup><mml:mi /><mml:mn>171</mml:mn></mml:msup><mml:msup><mml:mi>Yb</mml:mi><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:m
近红外混合量子光子接口 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" Overflow="scroll"><mml:msup><
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Chun Wu;D. Riedel;Andrei Ruskuc;Ding Zhong;Hyounghan Kwon;Andrei Faraon
  • 通讯作者:
    Andrei Faraon

Andrei Faraon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrei Faraon', 18)}}的其他基金

Quantum Control of Vanadium Nuclear Spin Registers Surrounding a Single Ytterbium Ion in a Crystal
晶体中单个镱离子周围钒核自旋寄存器的量子控制
  • 批准号:
    2210570
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Coherent Control of Single Neodymium Ion Qubits
单钕离子量子位的相干控制
  • 批准号:
    1820790
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
UNS: Fast Focus-scanning Microscopy Using Micron-thick phase Plates Based on High-index Meta-structures
UNS:使用基于高折射率超结构的微米厚相位板的快速聚焦扫描显微镜
  • 批准号:
    1512266
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Telecom wavelength high-repetition-rate quantum light source
电信波长高重复率量子光源
  • 批准号:
    10088290
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
  • 批准号:
    2335283
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
  • 批准号:
    2347622
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/2
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Light-matter interaction in quantum materials
量子材料中的光与物质相互作用
  • 批准号:
    2904757
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
ERI: Development of light-emitting devices having intensive quantum-optical properties using a low-dimensional semiconducting material
ERI:使用低维半导体材料开发具有强量子光学特性的发光器件
  • 批准号:
    2301580
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Quantum Imaging with Squeezed Light
压缩光量子成像
  • 批准号:
    2883962
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Probing the Quantum Vacuum with High Power Laser and 4th Generation Light Sources in the Search for New Physics
用高功率激光和第四代光源探测量子真空,寻找新物理
  • 批准号:
    EP/X01133X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Study on light-field-driven dynamics for ultrafast control of quantum states of matter
用于物质量子态超快控制的光场驱动动力学研究
  • 批准号:
    23K13052
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了