CAREER: Topology, Symmetry and Disorder in Strongly Correlated Systems

职业:强相关系统中的拓扑、对称和无序

基本信息

  • 批准号:
    1455366
  • 负责人:
  • 金额:
    $ 50.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis CAREER award supports basic theoretical research on the self-organization of electrons in materials that are quantum mechanical phases of matter characterized by topological order. Experiments cannot distinguish among such phases by probing small pieces of the material, but instead must perform measurements that in effect probe the entire extent of a sample. This suggests that topological phases may be potent tools for storing and manipulating quantum-mechanical information. In contrast to familiar information storage technologies, information would be encoded globally in a topological phase and would be protected against the detrimental effects of material imperfections and other extrinsic sources of interference, that are generally confined to small regions. Implementing this intriguing idea to build a topological quantum computer is a major technical challenge, while understanding the behavior of these unusual phases of matter is a fundamental problem.This project approaches these goals from two directions. The first is to develop a systematic understanding of topological phases from the perspective of the symmetry of their crystalline host materials. This will enable the identification and classification of new topological phases, including 'semi-metals' intermediate between metals and semiconductors that may provide platforms for new quantum devices. The second direction is to understand the behavior of a simple quantum computer: a system of many interacting computer bits governed by the laws of quantum mechanics isolated from their surroundings. The PI will examine whether such systems can avoid evolving into a state of thermal equilibrium which could wash out their quantum information content. The PI aims to develop techniques to probe the unusual phases that result when such an equilibrium is evaded. In a fundamental sense, these quantum states resemble 'glasses' and appear to represent a fundamentally new type of system governed by quantum mechanics, with the potential for new and surprising behaviors and applications.Alongside these research goals, the PI will implement a comprehensive education and outreach plan. One effort will use thought-provoking experiments to expose middle school students - drawn predominantly from schools with a large proportion of students of low socio-economic status - to basic scientific questions. This will build in to existing outreach programs at the PI's institution, and go beyond them by providing materials and guidance for their teachers to duplicate such discovery activities in the classroom. The PI will develop new courses at the graduate and undergraduate levels and establish a journal club to acquaint graduate students with research literature. The project includes funding for graduate and undergraduate students, who will be actively mentored and given the opportunity to participate in both national and international scientific collaborations or conferences. The PI will also found a biennial summer school to prepare beginning graduate students in Southern California for research careers in condensed matter physics. The school will promote diversity by encouraging participation by nontraditional and minority students in the California State University system.TECHNICAL SUMMARY This CAREER award supports theoretical research into condensed matter systems where interactions among constituent particles lead to topological phases of matter. Such phases are potentially relevant to building decoherence-resistant topological qubits for quantum computers.The first thrust of the research activity will examine how crystalline symmetries delineate possible phases of matter, building on prior work by the PI and collaborators demonstrating the role of 'non-symmorphic' symmetries. Generalizing these ideas, the PI will study systems where spin-orbit and interelectron interactions lead to new phases. The PI will also examine how such symmetries lead to Landau-forbidden phase transitions, using simple exactly solvable models. Armed with these results, the P.I. will analyze the classification of interacting topological crystalline insulators. Finally, the novel transport properties of the semi-metals that emerge as a consequence of crystalline symmetries or accidental degeneracies between energy bands will be studied, with an emphasis on their connection to quantum anomalies. The second broad direction examines the response of topological phases to impurities. Three main problems will be addressed: (i) the development of new dynamical probes capable of discerning subtle effects of interactions on disordered, isolated topological systems; (ii) an analysis of the behavior of disordered chains of non-Abelian anyons to examine their potential for realizing novel many-body localized phases with low entanglement; and (iii) the possibility of granular phases in disordered quantum Hall systems, similar to analogous phases in dirty superconductors, which would represent an unusual form of topological matter.The P.I. will also implement a comprehensive education plan that integrates these research goals into outreach aimed at K-12 students, undergraduate and graduate research and mentoring, curricular and professional development of junior researchers. The project will also establish a biennial summer school to prepare beginning graduate students in Southern California for re-search careers in condensed matter physics.
非技术摘要该职业奖支持材料中电子自组织的基础理论研究,这些材料是以拓扑顺序为特征的物质的量子力学相。实验无法通过探测小块材料来区分这些相,而是必须进行有效探测样品整个范围的测量。这表明拓扑相可能是存储和操纵量子力学信息的有效工具。与熟悉的信息存储技术相比,信息将在拓扑阶段进行全局编码,并且将受到保护,免受材料缺陷和其他外部干扰源(通常仅限于小区域)的有害影响。实现这个有趣的想法来构建拓扑量子计算机是一项重大的技术挑战,而理解这些不寻常的物质相的行为则是一个基本问题。该项目从两个方向实现这些目标。首先是从晶体主体材料的对称性角度对拓扑相进行系统的理解。这将使新的拓扑相的识别和分类成为可能,包括金属和半导体之间的“半金属”中间体,可以为新的量子器件提供平台。第二个方向是理解简单量子计算机的行为:一个由许多相互作用的计算机位组成的系统,受与周围环境隔离的量子力学定律的控制。 PI 将检查此类系统是否可以避免演变成热平衡状态,从而消除其量子信息内容。 PI 的目标是开发技术来探测当避免这种平衡时所产生的异常阶段。从根本上讲,这些量子态类似于“眼镜”,似乎代表了一种由量子力学控制的全新系统,具有令人惊讶的新行为和应用的潜力。除了这些研究目标外,PI还将实施一项全面的教育和推广计划。其中一项努力将利用发人深省的实验,让中学生(主要来自社会经济地位较低的学生的学校)了解基本的科学问题。这将建立在 PI 机构现有的外展计划的基础上,并通过为教师在课堂上重复此类发现活动提供材料和指导来超越这些计划。 PI 将开发研究生和本科生的新课程,并建立一个期刊俱乐部,让研究生熟悉研究文献。该项目包括为研究生和本科生提供资金,他们将受到积极指导,并有机会参加国内和国际科学合作或会议。 PI 还将建立一所两年一度的暑期学校,为南加州的研究生新生做好凝聚态物理学研究生涯的准备。学校将通过鼓励非传统和少数族裔学生参与加州州立大学系统来促进多样性。技术摘要 该职业奖支持对凝聚态物质系统的理论研究,在该系统中,组成粒子之间的相互作用导致物质的拓扑相。这些相可能与为量子计算机构建抗退相干拓扑量子位相关。研究活动的第一个重点将是在 PI 和合作者之前证明“非同形”对称作用的工作的基础上,研究晶体对称性如何描绘物质的可能相。概括这些想法,PI 将研究自旋轨道和电子间相互作用导致新相的系统。 PI 还将使用简单且精确可解的模型来研究这种对称性如何导致朗道禁止相变。有了这些结果,P.I.将分析相互作用的拓扑晶体绝缘体的分类。最后,将研究由于晶体对称性或能带之间的意外简并而出现的半金属的新颖输运特性,重点是它们与量子异常的联系。第二个大方向研究拓扑相对杂质的响应。将解决三个主要问题:(i)开发新的动力学探针,能够识别相互作用对无序、孤立的拓扑系统的微妙影响; (ii) 分析非阿贝尔任意子无序链的行为,以检验它们实现低纠缠的新型多体定域相的潜力; (iii)无序量子霍尔系统中颗粒相的可能性,类似于脏超导体中的类似相,这将代表一种不寻常的拓扑物质形式。还将实施一项全面的教育计划,将这些研究目标纳入针对 K-12 学生的外展活动、本科生和研究生的研究与指导、初级研究人员的课程和专业发展。该项目还将建立一所两年一度的暑期学校,为南加州的研究生新生做好凝聚态物理研究职业的准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Chernyshev其他文献

Generalized t-t'-J model: Parameters and single-particle spectrum for electrons and holes in copper oxides.
广义 t-t-J 模型:铜氧化物中电子和空穴的参数和单粒子能谱。
  • DOI:
    10.1103/physrevb.53.335
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    VI Vi Belinicher;Alexander Chernyshev;V. A. Shubin
  • 通讯作者:
    V. A. Shubin
Single-hole dispersion relation for the real CuO2 plane.
真实 CuO2 平面的单孔色散关系。
  • DOI:
    10.1103/physrevb.54.14914
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Belinicher;Alexander Chernyshev;V. A. Shubin
  • 通讯作者:
    V. A. Shubin

Alexander Chernyshev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Topics in mirror symmetry and symplectic topology
镜像对称和辛拓扑主题
  • 批准号:
    2746276
  • 财政年份:
    2022
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Studentship
Singularities, symplectic topology and mirror symmetry
奇点、辛拓扑和镜像对称
  • 批准号:
    EP/W001780/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Fellowship
Alexandrov Geometry in the light of symmetry and topology
对称性和拓扑学中的亚历山德罗夫几何
  • 批准号:
    441899338
  • 财政年份:
    2020
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Priority Programmes
Symmetry, Geometry, and Topology of Quantum Many-Body States for Quantum Computation
用于量子计算的量子多体态的对称性、几何和拓扑
  • 批准号:
    1915011
  • 财政年份:
    2019
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
CAREER: Interplay of Symmetry and Topology in Condensed Matter Systems
职业:凝聚态系统中对称性和拓扑的相互作用
  • 批准号:
    1846109
  • 财政年份:
    2019
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Continuing Grant
Hydrodynamic topology transitions: dimensionality and symmetry
流体动力学拓扑转变:维数和对称性
  • 批准号:
    19H01859
  • 财政年份:
    2019
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Topology and Symmetry Enabled Phenomena in Lasers and Other Non-Hermitian Photonic Media
职业:激光器和其他非厄米光子介质中的拓扑和对称现象
  • 批准号:
    1847240
  • 财政年份:
    2019
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Continuing Grant
Symmetry and Self-Similar Structures in Geometry and Topology
几何和拓扑中的对称和自相似结构
  • 批准号:
    1855371
  • 财政年份:
    2018
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
Symmetry and Self-Similar Structures in Geometry and Topology
几何和拓扑中的对称和自相似结构
  • 批准号:
    1811824
  • 财政年份:
    2018
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Standard Grant
Novel magnon transport phenomena under spin textures with nontrivial topology and symmetry
具有非平凡拓扑和对称性的自旋纹理下的新型磁振子输运现象
  • 批准号:
    18H03685
  • 财政年份:
    2018
  • 资助金额:
    $ 50.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了