CAREER: Finessing Optical Frequency Combs for Direct Cooling and Trapping of Molecules
职业:精巧光学频率梳以直接冷却和捕获分子
基本信息
- 批准号:1455357
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-15 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While lasers are typically thought of as heating objects they shine upon, they have also come to be routinely used in scientific laboratories to make things extremely cold. Laser cooling is capable of refrigerating vapors of atoms to fractions of a degree above absolute zero, where their behavior is governed by quantum physics. In the past three decades, scientists have used these cold atomic vapors as a scientific platform for learning about this quantum regime, and the field has given birth to applications such as atomic clocks and sensors. The chemicals that can be investigated in this way, however, are limited to only a handful by the laser colors available. Extending laser cooling to a broader array of atoms and molecules is desirable for learning about these species and how they interact at a level of detail not possible at room temperature. The research team supported by this program will be studying the application of a different type of laser to cool these difficult species. These so-called "ultrafast" lasers can be made to emit an entire rainbow of colors at once, and this program will study how to finesse these sources into laser cooling a wider array of atoms and molecules. Successful extension of laser cooling to these species is expected to find use in the next generation of sensors, computers, and platforms for future science.Direct laser cooling and trapping using optical frequency combs has the potential to extend laser cooling to more diverse species of atoms and molecules than are currently accessible. This potential arises due to their utility in creating many optical frequencies in parallel in parts of the optical spectrum where doing this with continuous-wave lasers is impractical, such as the deep ultraviolet. The enhanced efficiency with which mode-locked lasers can drive two-photon transitions or be converted to desired wavelengths via nonlinear processes results in utilization of the full power in the comb even if only one tooth is used, making this process efficient. Specifically, researchers supported by this program will use picosecond mode-locked optical frequency combs for direct laser cooling and magneto-optical trapping of atoms on two-photon transitions (rubidium, nitrogen) and single-photon laser cooling of diatomic molecules (Strontium Hydride). Time-dependent sweeps of the comb will also be investigated as a method for beam slowing and trap capture that would be applicable to a wider array of species than Zeeman slowing, such as diatomics. Development of a widely-applicable technique for cooling of molecules would have payoffs, including the ability to address significant unknowns in the fields of dipolar quantum gases, quantum simulations, controlled chemistry, and quantum computing.
虽然激光通常被认为是被照射的加热物体,但它们也经常被用于科学实验室,使物体变得极其寒冷。激光冷却能够将原子蒸气冷却到绝对零度以上的程度,在绝对零度以上,原子的行为受到量子物理的制约。在过去的三十年里,科学家们将这些冷原子蒸气作为了解这种量子制度的科学平台,该领域已经诞生了原子钟和传感器等应用。然而,可以用这种方式研究的化学物质仅限于少数几种,因为可用的激光颜色。将激光冷却扩展到更广泛的原子和分子阵列是可取的,以了解这些物种以及它们如何在室温下不可能的细节水平上相互作用。由该计划支持的研究小组将研究一种不同类型的激光的应用,以冷却这些困难的物种。这些所谓的“超快”激光可以一次发射出整个彩虹的颜色,这个项目将研究如何巧妙地利用这些光源来激光冷却更多的原子和分子。成功地将激光冷却扩展到这些物种,有望在下一代传感器、计算机和未来科学平台中找到用途。使用光学频率梳的直接激光冷却和捕获有可能将激光冷却扩展到比目前可访问的更多种类的原子和分子。这种可能性的产生是因为它们可以在光谱的某些部分并行产生许多光学频率,而在这种情况下,使用连续波激光来实现这一点是不切实际的,例如深紫外光。锁模激光可以驱动双光子跃迁或通过非线性过程转换为所需波长的效率提高,导致即使只使用一个齿也可以利用梳子中的全部功率,从而使这一过程变得高效。具体地说,该计划支持的研究人员将使用皮秒锁模光学频率梳来直接激光冷却原子,并在双光子跃迁(Rb、N)和双原子分子(氢化锶)的单光子激光冷却中捕获原子。梳子的随时间变化的扫描也将被作为一种光束减速和陷阱捕获的方法进行研究,这种方法将适用于比塞曼减速更广泛的物种,如硅藻。开发一种广泛适用的分子冷却技术将会带来回报,包括解决偶极量子气体、量子模拟、受控化学和量子计算领域的重大未知问题的能力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct frequency comb laser cooling and trapping
- DOI:10.1103/physrevx.6.041004
- 发表时间:2016-03
- 期刊:
- 影响因子:0
- 作者:A. Jayich;X. Long;W. C. Campbell
- 通讯作者:A. Jayich;X. Long;W. C. Campbell
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wesley Campbell其他文献
Wesley Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wesley Campbell', 18)}}的其他基金
Exploring Open Channel Operations with Atomic Qubits as A Processing and Measurement Resource
探索使用原子量子位作为处理和测量资源的开放通道操作
- 批准号:
2207985 - 财政年份:2022
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Metastable Trapped Ions for Clockwork and Probing Nuclear Structure
用于发条和探测核结构的亚稳态捕获离子
- 批准号:
1912555 - 财政年份:2019
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
相似海外基金
Finessing, Extending and Developing an Overview of the Regulation of Ascorbate in plants (FEDORA)
精炼、扩展和发展植物中抗坏血酸的调控概述 (FEDORA)
- 批准号:
BB/W006553/1 - 财政年份:2022
- 资助金额:
$ 70万 - 项目类别:
Research Grant
Finessing, Extending and Developing an Overview of the Regulation of Ascorbate in plants (FEDORA)
精炼、扩展和发展植物中抗坏血酸的调控概述 (FEDORA)
- 批准号:
BB/W006707/1 - 财政年份:2022
- 资助金额:
$ 70万 - 项目类别:
Research Grant














{{item.name}}会员




