The Role of Diagnostic vs. Non-Diagnostic Facial Features in Eyewitness Identification

诊断性与非诊断性面部特征在目击者识别中的作用

基本信息

  • 批准号:
    1456571
  • 负责人:
  • 金额:
    $ 18.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2018-01-31
  • 项目状态:
    已结题

项目摘要

The problem of innocent suspects being mistakenly convicted of a crime they did not commit and the parallel problem of guilty suspects being mistakenly released into society are attributable in no small part to the fallibility of eyewitness memory. A great deal of eyewitness memory research has focused on reducing false identifications of innocent suspects (thereby reducing the chances that they will be wrongly convicted). However, methods that reduce that unfortunate error often have the effect of increasing the complementary error, namely, the error of failing to identify guilty suspects. That tradeoff might be considered acceptable, but a better approach would involve reducing both errors simultaneously. To date, very little research has been conducted with that goal in mind, but it is the goal of the research proposed here. In particular, this research asks what can be done to enhance eyewitness discriminability (i.e., the ability to tell the difference between innocent and guilty suspects). To answer this question, the research is guided by a new theory of eyewitness identification: the diagnostic feature-detection hypothesis. Enhancing the discriminability of eyewitness memory procedures has significant broader impacts because it would decrease misidentifications of the innocent while at the same time increasing identifications of the guilty.This project will focus on three widely used eyewitness identification procedures: the traditional simultaneous lineup (in which 6 faces are shown to the witness simultaneously), the newer sequential lineup (in which the 6 faces are shown to the witness one at a time), and the showup procedure (in which only one face is shown to a witness for a yes/no decision). Virtually all police departments make use of the showup procedure (because it is often the only possibility in a fast-moving investigation), and nearly 30% of police departments have switched from the simultaneous lineup procedure to the sequential procedure. However, contrary to what was previously believed, recent work has found that both the showup and the sequential lineup are inferior to the simultaneous procedure (i.e., the simultaneous procedure can reduce false identifications of innocent suspects while at the same time increasing correct identifications of guilty suspects compared to the other two procedure). Given the common and likely continued use of the showup procedure and sequential lineup, this research proposes a series of experiments to investigate simple and convenient ways to enhance the diagnostic accuracy of these eyewitness identification procedures.
无辜的嫌疑犯被错误地判定犯有他们没有犯下的罪行的问题,以及有罪的嫌疑犯被错误地释放到社会中的平行问题,在很大程度上归因于目击者记忆的不可靠性。大量关于目击者记忆的研究都集中在减少对无辜嫌疑人的错误指认上(从而减少他们被错误定罪的可能性)。然而,减少这一不幸错误的方法往往会增加补充错误,即未能确定犯罪嫌疑人的错误。这种折衷可能被认为是可以接受的,但更好的方法是同时减少这两种错误。到目前为止,很少有研究考虑到这一目标,但这是这里提出的研究目标。 特别是,这项研究询问可以做些什么来提高目击者的辨别力(即,区分无辜和有罪嫌疑人的能力)。 为了回答这个问题,这项研究以一种新的目击者识别理论为指导:诊断特征检测假说。 提高目击者记忆程序的可辨别性具有显著的更广泛的影响,因为它将减少对无辜者的错误识别,同时增加对有罪者的识别。传统的同步阵容(其中6张脸同时显示给证人),较新的顺序阵容(其中6张脸一次一张地显示给证人),以及showup程序(其中只有一张脸显示给证人以决定是/否)。事实上,所有的警察部门都使用了现身程序(因为这通常是快速调查中唯一的可能性),近30%的警察部门已经从同时列队程序转向顺序程序。然而,与以前认为的相反,最近的工作发现,showup和顺序阵容都不如同时程序(即,与其他两种程序相比,同时程序可以减少对无辜嫌疑人的错误识别,同时增加对有罪嫌疑人的正确识别)。鉴于常见的和可能继续使用的showup程序和顺序阵容,本研究提出了一系列的实验,调查简单方便的方法来提高这些目击者识别程序的诊断准确性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Wixted其他文献

Applying confidence accuracy characteristic plots to old/new recognition memory experiments
将置信准确度特征图应用于旧/新识别记忆实验
  • DOI:
    10.1080/09658211.2021.1901937
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Eylul Tekin;K. DeSoto;John Wixted;H. Roediger III
  • 通讯作者:
    H. Roediger III
Name that tune: Identifying popular recordings from brief excerpts
为曲子命名:从简短摘录中识别流行录音
  • DOI:
    10.3758/bf03212973
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Andrea R. Halpern;D. Levitin;John Wixted;E. G. Schellenberg;P. Iverson;M. McKinnon
  • 通讯作者:
    M. McKinnon
The efficacy of an anti-protrusio plate in patients with anterior column posterior hemitransverse and associated both column acetabular fractures
  • DOI:
    10.1016/j.jcot.2020.10.036
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sravya T. Challa;Paul Appleton;Edward K. Rodriguez;John Wixted
  • 通讯作者:
    John Wixted

John Wixted的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Wixted', 18)}}的其他基金

Signal Detection Theory and Eyewitness Memory
信号检测理论和目击者记忆
  • 批准号:
    1155248
  • 财政年份:
    2012
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Reinforcement-Based Models of Delayed Matching-to-Sample Performance
基于强化的延迟匹配样本性能模型
  • 批准号:
    9122395
  • 财政年份:
    1992
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Serial Memory
串行存储器
  • 批准号:
    8907936
  • 财政年份:
    1989
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Multiomics for the diagnostic and surveillance of infectious diseases
用于传染病诊断和监测的多组学
  • 批准号:
    502560
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
ICF: Development of a rapid diagnostic test to identify Crimean-Congo Haemorrhagic Fever at the point-of-care
ICF:开发快速诊断测试以在护理点识别克里米亚-刚果出血热
  • 批准号:
    MR/Y019431/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Research Grant
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
  • 批准号:
    10089281
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Investment Accelerator
SBIR Phase I: Development of a SERS-based diagnostic platform for multiplexing ubiquitous inflammatory markers in cancer.
SBIR 第一阶段:开发基于 SERS 的诊断平台,用于多重癌症中普遍存在的炎症标记物。
  • 批准号:
    2348543
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
PFI-TT: A Rapid Multiplexed Diagnostic Tool for Serology of Tick-Borne Diseases
PFI-TT:蜱传疾病血清学快速多重诊断工具
  • 批准号:
    2345816
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Diagnostic and Therapeutic Potential of Circular RNAs in Autism Spectrum Disorder
环状 RNA 在自闭症谱系障碍中的诊断和治疗潜力
  • 批准号:
    24K10503
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Blood metabolomics as a next-generation cancer diagnostic platform technology
血液代谢组学作为下一代癌症诊断平台技术
  • 批准号:
    10067218
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Collaborative R&D
A novel diagnostic tool leveraging AI for protein design and microfluidics for better cell therapy management
一种利用人工智能进行蛋白质设计和微流体技术以实现更好的细胞治疗管理的新型诊断工具
  • 批准号:
    10082156
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Collaborative R&D
Test, treat, and connect on site using a dual rapid diagnostic point-of-care test for syphilis and HIV among people who are experiencing houselessness
使用梅毒和艾滋病毒双重快速诊断现场检测对无家可归者进行现场检测、治疗和联系
  • 批准号:
    489125
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了