SHINE: Connecting the Solar Wind From the Corona to the Heliosphere

SHINE:将太阳风从日冕连接到日光层

基本信息

项目摘要

This 3-year SHINE project aims to quantitatively study the solar wind from end to end, for the first time, by linking two completely different types of data and using a novel, powerful diagnostic technique, the Michigan Ionization Code (MIC). The results of this project will lead to a whole new level of quantitative understanding of the thermal and environmental conditions in the source regions of the solar wind, and in an empirical description of the wind physical parameters, thermal history and acceleration. Furthermore, the project will provide the community with a new, powerful tool to predict the evolution of ion charge states in the solar wind, as well as a powerful methodology to study the solar wind matching two completely different types of observations: high-resolution spectral and in-situ ion composition measurements. The project is primarily intended to fund and develop the skills of a graduate student, and the methodology and results coming from the research investigations will be incorporated into the graduate students thesis. The peculiar nature of the project, which connects two entirely different types of observations and of data analysis techniques, will uniquely position the graduate student at the crossroads of two communities the in-situ and remote sensing communities and will provide her/him the expertise to contribute to both of them. Additionally, undergraduates will be involved through programs like the REU at the University of Michigan. The research and EPO agenda of this project supports the Strategic Goals of the AGS Division in discovery, learning, diversity, and interdisciplinary research.The main science objectives of this SHINE project are: (1) investigate the heating and acceleration of both slow and fast solar wind; and, (2) uniquely identify the solar wind source regions. To accomplish these objectives, the project team will: (1) utilize the MIC, which predicts the evolution of the solar wind ion abundances as they leave the Sun from the source region to the freeze-in point and beyond to Earth; and, (2) directly and quantitatively link in-situ observations from SWICS on board Ulysses with high-resolution measurements of the inner corona from SUMER (onboard SOHO) and EIS (onboard Hinode) of the same parcel of solar wind observed during SOHO/Ulysses and SOHO/Hinode/Ulysses quadrature. The team will determine the temperature, density and wind velocity profiles that simultaneously fit both types in-situ and remote observations. During this project, the team will: (1) identify charge state ratios to be used for wind source region diagnostics; (2) develop an empirical model of solar wind plasma, which includes electron density, electron temperature, velocity, and element and ion composition as a function of distance; and, (3) determine the source regions of both fast and slow solar wind.
这个为期3年的SHINE项目旨在通过连接两种完全不同类型的数据并使用一种新的,强大的诊断技术,密歇根电离码(MIC),首次从头到尾定量研究太阳风。 该项目的成果将导致对太阳风源区的热和环境条件的全新定量理解,以及对风的物理参数、热历史和加速度的经验描述。 此外,该项目还将为科学界提供一个新的、强有力的工具,用于预测太阳风中离子电荷状态的演变,并提供一种强有力的方法,用于研究与两种完全不同类型的观测相匹配的太阳风:高分辨率光谱和现场离子组成测量。 该项目的主要目的是资助和发展研究生的技能,研究调查的方法和结果将被纳入研究生论文。 该项目的特殊性质,它连接两个完全不同类型的观测和数据分析技术,将独特的定位在两个社区的十字路口的研究生现场和遥感社区,并将提供她/他的专业知识,以促进他们两个。 此外,本科生将参与密歇根大学的REU等项目。 该项目的研究和EPO议程支持AGS部门在发现,学习,多样性和跨学科研究方面的战略目标。该项目的主要科学目标是:(1)调查慢速和快速太阳风的加热和加速;(2)唯一识别太阳风源区。 为了实现这些目标,项目小组将:(1)利用MIC,它预测太阳风离子丰度从源区离开太阳到冻结点再到地球的演变;并且,在本发明中,(2)直接和定量地将卫星上SWICS的现场观测与SUMER的内日冕高分辨率测量联系起来(在SOHO上)和EIS(在SOHO上)在SOHO/Hinode和SOHO/Hinode/Hinode正交期间观测到的相同太阳风包。 该小组将确定同时适合现场和远程观测的温度、密度和风速分布。 在该项目期间,该团队将:(1)确定用于风源区域诊断的电荷状态比;(2)开发太阳风等离子体的经验模型,其中包括电子密度,电子温度,速度以及作为距离函数的元素和离子组成;以及(3)确定快速和慢速太阳风的源区。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Lepri其他文献

Susan Lepri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Lepri', 18)}}的其他基金

SHINE Postdoc: Modeling Elevated Charge States in Hot ICMEs and SEP Events to Study Their Inner Coronal Sources
SHINE 博士后:模拟热 ICME 和 SEP 事件中的高电荷态以研究其内日冕源
  • 批准号:
    0523998
  • 财政年份:
    2005
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Continuing Grant

相似海外基金

Connecting Histories, Connecting Heritage: Early Modern Cities and Their Afterlives
连接历史、连接遗产:早期现代城市及其来世
  • 批准号:
    MR/X036200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Fellowship
CAREER: Connecting eukaryotic electron transfer components to nitrogenase using a bacterial chassis
职业:使用细菌底盘将真核电子传递组件连接到固氮酶
  • 批准号:
    2338085
  • 财政年份:
    2024
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323649
  • 财政年份:
    2024
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
Peer promoted LunchChat app at university: connecting students at mealtimes to prevent/reduce loneliness
大学里同行推广的 LunchChat 应用程序:在用餐时间联系学生以防止/减少孤独感
  • 批准号:
    MR/Z503587/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Research Grant
CC* Regional Networking: Connecting Colorado's Western Slope Small Institutions of Higher Education to the Front Range GigaPoP Regional R&E Infrastructure
CC* 区域网络:将科罗拉多州西坡小型高等教育机构与前沿 GigaPoP 区域 R 连接起来
  • 批准号:
    2346635
  • 财政年份:
    2024
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323648
  • 财政年份:
    2024
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
Where we belong: Connecting Indigenous identity and well-being in the city
我们属于哪里:将原住民身份与城市福祉联系起来
  • 批准号:
    IN240100006
  • 财政年份:
    2024
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Discovery Indigenous
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Fellowship Award
CAREER: Carotenoid coloration in an evolutionary radiation: Connecting molecular function, fitness, and diet ecology in wood warblers
职业:进化辐射中的类胡萝卜素着色:连接林莺的分子功能、健康和饮食生态学
  • 批准号:
    2337828
  • 财政年份:
    2024
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Continuing Grant
Connecting the lifecycles of galaxies and their central black holes
连接星系及其中心黑洞的生命周期
  • 批准号:
    MR/Y019539/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了