Hydropower Plant on a Chip: Frictionless Nanochannel Systems for Hydroelectric Power Generation
芯片上的水力发电厂:用于水力发电的无摩擦纳米通道系统
基本信息
- 批准号:1462499
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Water flow through nanoscale channels can create electric power called streaming current. However, such nanoscale hydrodynamic flows have not yet been intensively investigated for practical energy manufacturing systems, particularly due to their low energy conversion efficiency resulting from significant frictional energy loss at the channel walls. This award supports fundamental research on such nanoscale hydrodynamic flows to lay the technical foundation for the development of nanofluidic energy manufacturing systems with high hydroelectric energy conversion efficiency and output power that are meaningful for real applications. Working as a "hydropower plant on a chip" with virtually little energy loss, the frictionless nanofluidic energy manufacturing systems can power small autonomous sensors, their networks, and mobile/wearable devices without batteries. Scaled-up systems (e.g., arrays of such chips) can further serve as reliable power stations for large systems with amplified power output. Scavenging energy from water, a sustainable/renewable resource, will enable such systems to be functional with little influence by ambient conditions. The integrated educational/outreach activities with research will help to prepare the next generation of technology leaders, a necessity for the U.S. to maintain its leadership role in energy manufacturing in a global economy. The objective of this research is to verify the theoretical prediction that a superhydrophobic surface reducing viscous wall friction with significant slip can increase ionic streaming current in nanoscale channel flow and consequently the electrokinetic energy conversion efficiency, potentially close to 100%, and also the output power up to a level two orders of magnitude higher than the current state of the art. To achieve this objective, a parametric study will be performed numerically for the electrostatically and hydrodynamically heterogeneous boundary conditions configurable on various types of superhydrophobic surfaces. The resulting streaming current and flow properties will be computed by coupling the Poisson-Boltzmann and the Navier-Stokes equations and employing the fluidic circuitry based on Onsager reciprocal relations. The theoretical results will then be verified with nanofluidic experiments by testing superhydrophobic nanochannels of regulated sizes for varying electrolytes and flow conditions. The combined theoretical and experimental approaches will reveal the new knowledge of the correlations between the electro-hydrodynamic and -kinetic variables critical for the electrokinetic power generation in nanochannel systems with heterogeneous boundary conditions.
流经纳米级渠道的水流可以产生称为流动电流的电能。然而,这种纳米尺度的流体动力流动在实际能源制造系统中还没有得到深入的研究,特别是因为它们的能量转换效率很低,因为通道壁上的巨大摩擦能量损失导致了它们的低能量转换效率。该奖项支持对这种纳米级流体动力流动的基础研究,为开发具有高水力发电能量转换效率和输出功率的纳米流体能源制造系统奠定技术基础,这些系统对实际应用具有重要意义。这种无摩擦的纳米流体能源制造系统作为一种“芯片上的水电站”工作,几乎没有能量损失,可以为小型自主传感器、它们的网络以及没有电池的移动/可穿戴设备提供动力。放大的系统(例如,这种芯片的阵列)可以进一步用作具有放大功率输出的大型系统的可靠发电站。水是一种可持续/可再生的资源,从水中收集能源将使这种系统能够在不受环境条件影响的情况下发挥作用。与研究相结合的教育/推广活动将有助于培养下一代技术领导者,这对美国在全球经济中保持其在能源制造方面的领导地位是必要的。这项研究的目的是验证理论预测,即超疏水表面减少粘性壁面摩擦和显著滑移可以增加纳米尺度沟道流动中的离子流动电流,从而增加动能转换效率,潜在接近100%,并且输出功率最高可达到比当前技术水平高两个数量级的水平。为了实现这一目标,将对可在各种类型的超疏水表面上配置的静电和流体动力学非均匀边界条件进行参数研究。通过耦合Poisson-Boltzmann方程和Navier-Stokes方程,并采用基于Onsager互易关系的流体回路,可以计算得到的流动电流和流动特性。然后,通过测试不同电解液和流动条件下调节尺寸的超疏水纳米通道,用纳米流体实验来验证理论结果。理论和实验相结合的方法将揭示对具有非均匀边界条件的纳米通道系统中电动发电至关重要的电流体变量和动力学变量之间的关系的新知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chang-Hwan Choi其他文献
Design of the monorail crane system for remote handling of the ITER neutral beam cell
- DOI:
10.1016/j.fusengdes.2021.112794 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:
- 作者:
Pierre-Robert Pelletier;Frédéric Fuzier;Chang-Hwan Choi;Marco Van Uffelen;Mikel Bilbao Gutierrez;Carlo Damiani;Susagna Balague;Kevin Smith;Didier Combescure;Emilio Ruiz Morales;Marco Chiappone;Campagnolo Roberto;Jordy Ayneto Pou;Shanshuang Shi;Jon Montgomerie;Mark Sherratt;Mike Nixon;Alberto Merino;Bernhard Haist - 通讯作者:
Bernhard Haist
Remote maintenance scenario of the beam line components of the ITER neutral beam system
- DOI:
10.1016/j.fusengdes.2022.113318 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Chang-Hwan Choi;Carlo Damiani;Mikel Bilbao Gutierrez;Joseph Graceffa;Marc Urbani;Anass El-Ouazzani Tayibi - 通讯作者:
Anass El-Ouazzani Tayibi
Design and analysis of the Agile Robot Transporter for ITER in-vessel maintenance
- DOI:
10.1016/j.fusengdes.2024.114474 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:
- 作者:
Chang-Hwan Choi;Raphael Hery;Jim Palmer;David Hamilton;Shanshuang Shi;Zheng Gong;Ashish Diwate;Thibault Plantin De Hugues;Filippo Verdolin;Damao Yao - 通讯作者:
Damao Yao
Modeling and analysis technique of the hoisting system in the monorail crane
- DOI:
10.1016/j.fusengdes.2022.113240 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Chang-Hwan Choi - 通讯作者:
Chang-Hwan Choi
Concept of operation of the Agile Robot Transporter for ITER in-vessel maintenance
- DOI:
10.1016/j.fusengdes.2024.114384 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:
- 作者:
Chang-Hwan Choi;Raphael Hery;Jim Palmer - 通讯作者:
Jim Palmer
Chang-Hwan Choi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chang-Hwan Choi', 18)}}的其他基金
I-Corps: Omniphobic Anodic Coatings
I-Corps:全能阳极涂层
- 批准号:
2326666 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
I-Corps: Artificial Cornea of Microtextured Hydrogel
I-Corps:微纹理水凝胶人工角膜
- 批准号:
1946450 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Structured Surfaces for Prevention of Ice Adhesion and Growth
用于防止冰粘附和生长的结构化表面
- 批准号:
1537474 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Molecular Plant
- 批准号:31224801
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Plant
- 批准号:31024802
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Journal of Integrative Plant Biology
- 批准号:31024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Cooperative Agreement
NSF Engines Development Award: Creating climate-resilient opportunities for plant systems (NC)
NSF 发动机开发奖:为工厂系统创造气候适应机会 (NC)
- 批准号:
2315399 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Cooperative Agreement
MARVEL-ous Extracellular vesicles carry RXLR effectors into host plant cells
MARVEL-ous 细胞外囊泡携带 RXLR 效应子进入宿主植物细胞
- 批准号:
BB/Y002067/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
A2M: Exploring in-silico predicted arms-races at the plant-pathogen interface
A2M:探索植物-病原体界面的计算机预测军备竞赛
- 批准号:
BB/Y000560/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Scaling-Up plant based Nanocarriers for BIOpharmaceuticals (SUNBIO)
用于生物制药的植物纳米载体的放大(SUNBIO)
- 批准号:
EP/Z53304X/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Animal-Identical, Plant-Grown: Molecular Farming for healthy and natural alternative meat ingredients
与动物相同,植物种植:分子农业提供健康和天然的替代肉类成分
- 批准号:
10087096 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Investment Accelerator
Social sustainable diets: Supporting the transition to plant-based foods through close relationships
社会可持续饮食:通过密切关系支持向植物性食品的过渡
- 批准号:
ES/Y01040X/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Fellowship
Optimising Nature's pharmacies: plant chemicals and pollinator health at the landscape scale
优化大自然的药房:景观尺度上的植物化学物质和传粉媒介健康
- 批准号:
NE/Y000285/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant