Examination of the Strength and Dilatancy of Granular Materials using 3D Printed Soil
使用 3D 打印土壤检查颗粒材料的强度和膨胀性
基本信息
- 批准号:1463516
- 负责人:
- 金额:$ 6.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The determination of the strength and stiffness of sands and gravels is a very important component of the design and construction of many civil engineering structures such as building and bridge foundations, levees, earth dams and retaining walls. Geotechnical engineers know that strength and stiffness are a function of grain shape and texture, as well as the density of the soil and the pressure it is subjected to. However, natural sands and gravels vary in mineralogy, surface roughness, size distribution, and particle shape making it very difficult to gain a clear understanding of how these variables affect the soil?s engineering properties. This research seeks to apply a novel technology, 3D printing, to a classical soil mechanics problem to reexamine soil strength in a way that is not possible with natural soils. 3D printed particles maintain the same material and surface properties even when the particle shape or size distribution is varied. This feature allows for the direct influence of particle shape to be examined. Laboratory experiments on 3D printed granular particles will be used to refine current theories of soil behavior. Being able to better predict the behavior of sands and gravels on a description of shape would greatly advance the state-of-art in the fields of soil mechanics, geotechnical engineering, pavement materials, and material handling processes. In addition, the use of 3D printed soil provides a synergistic approach to teaching fundamental soil behavior at the undergraduate and graduate levels. Critical state soil mechanics provides a useful framework for analyzing soil behavior, but the need for large soil databases and the lack of a unique relationship between dilatancy and strength hinders its more-wide acceptance among practitioners and undergraduate soil mechanics classes. Because the critical state shearing angle is mostly dependent on mineralogy, the peak angle of shearing resistance depends on a dilatancy-related component of strength, and thus it depends on shape. This research tests the hypothesis that 3D printed particles can be used as an analog granular soil to investigate the relationship between dilatancy and strength by systematically varying shape while keeping the material properties the same. Not only will the experimental data be useful to demonstrate this relationship, but it will also be instrumental in the validation of discrete element method (DEM) models which can be used to examine the particle-scale response. Understanding the fundamental behavior in a dilatancy context will contribute to an increased understanding of numerous, more complex geotechnical problems including: liquefaction, pile side friction, bearing capacity, slope stability, and in situ testing (Cone Penetrometer Test, Standard Penetration Test).
砂和砾石的强度和刚度的确定是许多土木工程结构如建筑物和桥梁基础、堤坝、土坝和挡土墙的设计和施工的非常重要的组成部分。 岩土工程师知道,强度和刚度是颗粒形状和纹理的函数,以及土壤的密度和它所承受的压力。 然而,天然砂和砾石在矿物学、表面粗糙度、粒度分布和颗粒形状方面各不相同,因此很难清楚地了解这些变量如何影响土壤。的工程特性。 这项研究旨在将一种新技术3D打印应用于经典的土壤力学问题,以一种天然土壤不可能的方式重新检查土壤强度。 3D打印颗粒保持相同的材料和表面特性,即使颗粒形状或尺寸分布变化。 该特征允许检查颗粒形状的直接影响。3D打印颗粒的实验室实验将用于完善当前的土壤行为理论。 能够更好地预测砂和砾石的行为对形状的描述将大大推进土壤力学,岩土工程,路面材料和材料处理过程领域的最新技术。 此外,3D打印土壤的使用为本科生和研究生阶段的基本土壤行为教学提供了一种协同方法。 临界状态土力学为分析土壤行为提供了一个有用的框架,但对大型土壤数据库的需求和缺乏独特的粘性和强度之间的关系阻碍了从业者和本科土壤力学课程更广泛的接受。 由于临界状态剪切角主要取决于矿物学,剪切阻力的峰值角取决于强度的与粘性相关的分量,因此它取决于形状。 这项研究验证了一个假设,即3D打印颗粒可以用作模拟粒状土壤,通过系统地改变形状,同时保持材料特性相同,来研究粘性和强度之间的关系。 实验数据不仅有助于证明这种关系,而且有助于验证可用于检查颗粒尺度响应的离散元方法(DEM)模型。 了解的基本行为,在一个独立的背景下,将有助于增加对众多的理解,更复杂的岩土工程问题,包括:液化,桩侧摩擦,承载力,边坡稳定性,并在原位测试(锥贯入试验,标准贯入试验)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle Bernhardt其他文献
Michelle Bernhardt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle Bernhardt', 18)}}的其他基金
CAREER: Inspiring a New Paradigm in Geotechnical Design and Education Through an Understanding of Biomimetic Load Transfer in Soils
职业:通过了解土壤中的仿生荷载传递,激发岩土设计和教育的新范式
- 批准号:
1752392 - 财政年份:2018
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
- 批准号:
2338346 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: EAR-PF: Does topographic stress connect subsurface to surface through influencing bedrock strength, clast size, and landslides?
博士后奖学金:EAR-PF:地形应力是否通过影响基岩强度、碎屑尺寸和山体滑坡将地下与地表连接起来?
- 批准号:
2305448 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Fellowship Award
Impact of impurity elements on the corrosion performance of high strength 6xxx aluminium alloys
杂质元素对高强6xxx铝合金腐蚀性能的影响
- 批准号:
2906344 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Studentship
CAREER: Recycled Polymers of Enhanced Strength and Toughness: Predicting Failure and Unraveling Deformation to Enable Circular Transitions
职业:增强强度和韧性的再生聚合物:预测失效和解开变形以实现圆形过渡
- 批准号:
2338508 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
NSFGEO-NERC: The history of the Earth's magnetic field strength over the last five million years: Filling in the southern hemisphere gap
NSFGEO-NERC:过去五百万年地球磁场强度的历史:填补南半球的空白
- 批准号:
NE/Y005686/1 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Research Grant
OVERCOMP: Interface Formation and Bond Strength Prediction in Composite Injection Overmoulding
OVERCOMP:复合材料注塑包覆成型中的界面形成和粘合强度预测
- 批准号:
EP/X041360/1 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Research Grant
Investigation on the Sub-structure development in HSA6 alloys to maximise strength via Thermomechanical simulations
通过热机械模拟研究 HSA6 合金的子结构开发以最大限度地提高强度
- 批准号:
2901174 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Studentship
Development of novel metastable beta titanium alloys with ultrahigh strength and large ductility
超高强度大塑性新型亚稳态β钛合金的研制
- 批准号:
24K08018 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of bone graft substitutes with both osteogenic potential and high strength
开发兼具成骨潜力和高强度的骨移植替代物
- 批准号:
23K08604 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Realization of Ultralight and High Strength Materials by Fine Synthesis of Three-Dimensional Polymer Network
三维聚合物网络精细合成实现超轻高强材料
- 批准号:
23H02016 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




