Simple groups, representations, and related topics

简单的组、表示和相关主题

基本信息

  • 批准号:
    1500034
  • 负责人:
  • 金额:
    $ 2.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

The conference "Simple Groups, Representations, and Related Topics," will be held July 13-15, 2015 at the Center for Mathematical Sciences, University of Cambridge, UK. This grant partially supports travel expenses for US-based researchers, particularly early career mathematicians, to attend this major international conference addressing one of the core areas of modern algebra (group theory). The conference will bring together leading experts and outstanding young researchers, providing an opportunity to report on and discuss exciting recent advances in the field. It is expected that approximately 80 mathematicians will attend the conference. The meeting will play an important role in the further development of the subject by helping to identify interesting and challenging open problems and new applications. The location and timing has been chosen to be compatible with an independent conference on "Finite Simple Groups and their Applications" to be held the previous week at the University of Warwick, UK.The subject of the conference is related to the study of finite simple groups, which is a classical area of algebra that has been at the heart of research in group theory for two centuries. Simple groups are the basic building blocks of all finite groups, and the classification of finite simple groups (CFSG) is widely regarded as one of the greatest mathematical achievements of the 20th century, involving many researchers over a period of many years. This fundamental theorem has led to many interesting new problems in group theory and beyond, and the development of powerful techniques to solve them. In the last thirty years or so, post-CFSG, there have been great advances in our understanding of the subgroup structure and representation theory of simple groups. These topics are of fundamental importance in their own right, and they are essential for many applications. The meeting will focus on the theory of simple groups, with a particular emphasis on their subgroup structure and representations. The interplay between finite and algebraic simple groups will be a common theme, and we will focus on applications, both in group theory and in other areas of mathematics such as computational algebra, Lie theory, algebraic geometry, number theory, and model theory. For more information see the conference web site https://www.dpmms.cam.ac.uk/~dis20/liebecksaxl/Liebeck-Saxl_2015/Welcome.html
2015年7月13日至15日,将在英国剑桥大学数学科学中心举行“简单小组、陈述和相关话题”会议。这笔赠款部分资助了美国的研究人员,特别是早期职业数学家,参加这个涉及现代代数(群论)核心领域之一的重大国际会议的旅费。会议将汇集领先的专家和杰出的年轻研究人员,提供一个报告和讨论该领域令人兴奋的最新进展的机会。预计将有大约80名数学家参加会议。会议将通过帮助确定有趣和具有挑战性的未决问题和新的应用,在这一主题的进一步发展中发挥重要作用。地点和时间的选择是为了与前一周在英国华威大学举行的关于“有限单群及其应用”的独立会议相兼容。会议的主题与有限单群的研究有关,这是一个经典的代数领域,两个世纪以来一直是群论研究的核心。单群是所有有限群的基本构件,而有限单群的分类被广泛认为是20世纪最伟大的数学成就之一,涉及了许多研究者多年的时间。这一基本定理导致了群论内外许多有趣的新问题,以及解决这些问题的强大技术的发展。在过去的三十多年里,在后CFSG时代,我们对单群的子群结构和表示理论的理解有了很大的进步。这些主题本身就具有基本的重要性,并且对于许多应用程序都是必不可少的。会议将集中讨论单群的理论,特别强调其子群的结构和表示。有限单群和代数单群之间的相互作用将是一个共同的主题,我们将专注于在群论和其他数学领域的应用,如计算代数、李理论、代数几何、数论和模型论。欲了解更多信息,请访问会议网站https://www.dpmms.cam.ac.uk/~dis20/liebecksaxl/Liebeck-Saxl_2015/Welcome.html

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Affine zigzag algebras and imaginary strata for KLR algebras
Blocks of symmetric groups, semicuspidal KLR algebras and zigzag Schur-Weyl duality
  • DOI:
    10.4007/annals.2018.188.2.2
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    A. Evseev;A. Kleshchev
  • 通讯作者:
    A. Evseev;A. Kleshchev
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Brundan其他文献

Lowering operators for GL(n) and quantum GL(n
GL(n) 和量子 GL(n) 的降低运算符
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Brundan
  • 通讯作者:
    Jonathan Brundan
On Translation Functors for General Linear and Symmetric Groups
关于一般线性群和对称群的平移函子
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Brundan;A. Kleshchev
  • 通讯作者:
    A. Kleshchev
Dense Orbits and Double Cosets
稠密轨道和双陪集
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Brundan
  • 通讯作者:
    Jonathan Brundan
Tensor products and restrictions in type A
A 类中的张量积和限制
  • DOI:
    10.1515/9783110889161.67
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Brundan;A. Kleshchev
  • 通讯作者:
    A. Kleshchev
Graded triangular bases
  • DOI:
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Brundan
  • 通讯作者:
    Jonathan Brundan

Jonathan Brundan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Brundan', 18)}}的其他基金

Graphical and Categorical Methods in Representation Theory
表示论中的图解和分类方法
  • 批准号:
    2101783
  • 财政年份:
    2021
  • 资助金额:
    $ 2.29万
  • 项目类别:
    Standard Grant
Monoidal Categories and Categorification in Classical Representation Theory
经典表示论中的幺半范畴和分类
  • 批准号:
    1700905
  • 财政年份:
    2017
  • 资助金额:
    $ 2.29万
  • 项目类别:
    Continuing Grant
Representations of finite groups and Lie algebras - from combinatorics to categorification
有限群和李代数的表示 - 从组合到分类
  • 批准号:
    0654147
  • 财政年份:
    2007
  • 资助金额:
    $ 2.29万
  • 项目类别:
    Continuing Grant
Branching Rules and Tensor Product Decompositions in Algebraic Lie Theory
代数李理论中的分支规则和张量积分解
  • 批准号:
    9801442
  • 财政年份:
    1998
  • 资助金额:
    $ 2.29万
  • 项目类别:
    Standard Grant

相似海外基金

Characterization of Cofree Representations of Connected Semi-simple Lie Groups
连通半单李群 Cofree 表示的表征
  • 批准号:
    547756-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.29万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Characterization of Cofree Representations of Connected Semi-simple Lie Groups
连通半单李群 Cofree 表示的表征
  • 批准号:
    547756-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.29万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Characterization of Cofree Representations of Connected Semi-simple Lie Groups
连通半单李群 Cofree 表示的表征
  • 批准号:
    547756-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.29万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Understanding of the relation between degenerate hypergeometric functions and the matrix coefficients of the discrete series representations of semi simple Lie groups
理解简并超几何函数与半单李群离散级数表示的矩阵系数之间的关系
  • 批准号:
    23540005
  • 财政年份:
    2011
  • 资助金额:
    $ 2.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Nilpotent Conjugacy Classes and Representations of Real Semi-simple Lie Groups
数学科学:幂零共轭类和实半单李群的表示
  • 批准号:
    9214774
  • 财政年份:
    1992
  • 资助金额:
    $ 2.29万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Combinatoric Structure of Representations of Semi-Simple Groups Over Valued Fields
数学科学:有价值域上半单群表示的组合结构
  • 批准号:
    9006321
  • 财政年份:
    1990
  • 资助金额:
    $ 2.29万
  • 项目类别:
    Standard Grant
Classification, Block Theory and Local Analysis in Finite Simple Groups; and Lie Algebras and Their Representations (Mathematical Sciences)
有限简单群的分类、分块理论和局部分析;
  • 批准号:
    8202703
  • 财政年份:
    1982
  • 资助金额:
    $ 2.29万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Geometry and Representations of the Simple Groups
数学科学:简单群的几何和表示
  • 批准号:
    8201463
  • 财政年份:
    1982
  • 资助金额:
    $ 2.29万
  • 项目类别:
    Standard Grant
Regional Conference on Representations of Semi-Simple Lie Groups and Applications to Analysis, Geometry, and Number Theory, Chapel Hill, North Carolina; May 18-22, 1981
半简单李群表示及其在分析、几何和数论中的应用区域会议,教堂山,北卡罗来纳州;
  • 批准号:
    8105323
  • 财政年份:
    1981
  • 资助金额:
    $ 2.29万
  • 项目类别:
    Standard Grant
Representations of Semi-Simple Lie Groups
半单李群的表示
  • 批准号:
    7805983
  • 财政年份:
    1978
  • 资助金额:
    $ 2.29万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了