Arithmetic Manifolds, Automorphic Forms, Exponential Sums, and L-Functions
算术流形、自守形式、指数和和 L 函数
基本信息
- 批准号:1503629
- 负责人:
- 金额:$ 13.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project features two lines of research at the interface of mathematical analysis, the study of continuous change, and number theory, the study of properties of integers borne out of the notion of divisibility. The finer distribution of prime numbers, such as whether they end in certain blocks of digits more often than others, is captured by highly structured oscillating sequences known as Dirichlet characters, which give rise to the associated L-functions. This project will prove analytic results about certain special values of L-functions and sums of the values of Dirichlet characters, and it will specifically investigate the impact of the underlying modulus being composed of many smaller factors on these results and on the tools available to prove them. As a prototype of the other class of objects to be studied, signals and motions (such as light waves or vibrations of a string) are often much better understood when viewed as combinations, or superpositions, of simple periodic motions. The wave-like functions that analogously serve as building blocks of analysis on other spaces are known as eigenfunctions and are central in disciplines ranging from spectral geometry to quantum mechanics. This project will investigate the behavior of rapidly oscillating eigenfunctions on spaces with a rich set of symmetries that are arithmetic in nature, in particular how pronounced are their extreme values.This research project centers around two principal themes, that of extremal behavior of high-energy eigenfunctions on arithmetic manifolds and that of the depth and smooth aspects in analytic number theory. On certain arithmetic manifolds with a specific geometric and functorial structure, the joint eigenfunctions (Hecke--Maass eigenforms) exhibit power growth, which is neither generically expected nor predicted by physical models. The PI will seek out extremal growth and investigate in detail the sup-norm and restriction norm problems on several specific classes of arithmetic manifolds to inform general conjectures and understanding of the phenomenon of concentration of mass on arithmetic manifolds, the precise structure that drives it, and its place within the framework of the correspondence principle of quantum mechanics. In number-theoretic problems involving characters and automorphic forms of large level, the depth and smooth aspects, which are concerned with highly powerful or factorable conductors, play a very distinctive role. The structural impact of the powerful or factorable structure on nonvanishing, subconvexity, and moments of L-functions, as well as exponential sums involving p-adically analytic fluctuations will be studied using non-archimedean analysis, analytic number theory, and spectral theory.
这个项目的特点是在数学分析的界面上有两条研究线路,研究连续变化的研究,以及数论,研究源于整除概念的整数的性质。质数的精细分布,例如它们是否比其他数字更频繁地以某些数字块结束,被称为狄利克雷特字符的高度结构化的振荡序列捕捉到,这些字符产生了相关的L函数。本课题将证明关于L函数的某些特殊值和狄利克莱特征值的和的分析结果,并将具体研究由许多较小的因子组成的基础模对这些结果的影响以及对可用来证明它们的工具的影响。作为另一类待研究物体的原型,信号和运动(如光波或弦的振动)在被视为简单周期性运动的组合或叠加时往往更容易理解。类似于在其他空间上作为分析基础的波函数被称为本征函数,在从光谱几何到量子力学的各种学科中都是核心。这个项目将研究具有丰富对称性的空间上的快速振荡特征函数的行为,特别是它们的极值的显着性。本研究项目围绕两个主要主题,即高能特征函数在算术流形上的极值行为和解析数论中的深度和光滑方面。在某些具有特定几何和函数结构的算术流形上,联合特征函数(Hecke-Maass特征形式)表现出幂增长,这既不是通常预期的,也不是物理模型所预测的。PI将寻找极值增长并详细研究几类特定算术流形上的超范数和限制范数问题,以了解一般猜想和理解质量集中在算术流形上的现象,驱动它的精确结构,以及它在量子力学对应原理框架内的位置。在涉及特征标和大层次自同构形的数论问题中,深度和光滑性方面起着非常独特的作用,它们涉及到强大的或可因式分解的导体。本文将利用非阿基米德分析、解析数理论和谱理论研究强结构或可因式分解结构对L函数的非零性、次凸性、矩,以及涉及p-解析涨落的指数和的结构性影响。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Second Moment Theory of Families of 𝐿-Functions–The Case of Twisted Hecke 𝐿-Functions
- DOI:10.1090/memo/1394
- 发表时间:2023-02
- 期刊:
- 影响因子:1.9
- 作者:V. Blomer;É. Fouvry;E. Kowalski;P. Michel;Djordje Milićević;W. Sawin
- 通讯作者:V. Blomer;É. Fouvry;E. Kowalski;P. Michel;Djordje Milićević;W. Sawin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Djordje Milicevic其他文献
Djordje Milicevic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Djordje Milicevic', 18)}}的其他基金
Distribution and Analytic Aspects of Cusp Forms
尖点形式的分布和分析方面
- 批准号:
1903301 - 财政年份:2019
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
相似海外基金
Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
- 批准号:
2350309 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
- 批准号:
DP240102350 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Discovery Projects
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
- 批准号:
2343868 - 财政年份:2024
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
- 批准号:
2338843 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Surfaces in 4-manifolds and modified surgery theory
4 流形表面和改进的手术理论
- 批准号:
2347230 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
- 批准号:
2304990 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
- 批准号:
23K12970 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
- 批准号:
2247572 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
- 批准号:
2304841 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Continuing Grant
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
- 批准号:
2306204 - 财政年份:2023
- 资助金额:
$ 13.5万 - 项目类别:
Standard Grant














{{item.name}}会员




