Collaborative Research: Data-Driven Applications Inspiring Upper-Division Mathematics

协作研究:数据驱动的应用程序启发高年级数学

基本信息

  • 批准号:
    1504029
  • 负责人:
  • 金额:
    $ 6.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

Today's digital environment is filled with a continuously increasing amount of data stored as images and signals. Indeed, there is a critical need in America for students to be prepared to enter the workforce with the ability to research and solve current real-life problems - many of which are data-driven. Investigators from St. Mary's College of Maryland (Lead Institution), Hendrix College, Kenyon College, and Washington State University will collaborate to (1) introduce current cutting-edge research and practical data problems from science, industry, and government to students in undergraduate upper-division mathematics courses and (2) lead these students to develop the problem-solving, collaborative, and research skills that are so crucial in today's work environment. The focus of this project will be to create a body of applied data-driven instructional modules that will center on image and data analysis problems, including image denoising and deblurring, data clustering, data registration, radiographic reconstruction, climate simulation, diffusion, and wave propagation. These modules will motivate student research as well as generate a deeper student understanding and appreciation of the mathematical theory needed to solve these problems. The goals of the project are to: (i) design, develop, implement, assess, and adjust (as necessary) transportable modules to connect the computational and theoretical sides of upper division Real Analysis and Linear Algebra; (ii) establish a professional network for classroom testing and assessment of project modules and instructional strategies; and (iii) provide and utilize varied venues for student research collaboration. The project team will conduct research to assess how this hands-on data driven approach provides new avenues for student-directed study, helps prepare students for a workforce in need of research and data skills, improves student engagement and learning, and inspires students to pursue postgraduate study in theoretical and applied mathematics. Project research methods will include the incorporation of beta testing the modules and then collecting and analyzing quantitative and qualitative data. The research will include measures of students' knowledge, such as course assessments, as well as instruments to measure motivation and self-efficacy related to mathematics. With faculty from four institutions across the country, the project will also investigate the adaptability, to a variety of institutions, of the materials and instuctional approach .
今天的数字环境充满了以图像和信号形式存储的持续增长的数据量。事实上,美国的学生迫切需要准备好进入职场,具备研究和解决当前现实生活问题的能力--其中许多问题是由数据驱动的。来自马里兰圣玛丽学院(Lead Institution)、亨德里克斯学院、凯尼恩学院和华盛顿州立大学的研究人员将合作(1)向本科生高级数学课程的学生介绍当前科学、工业和政府领域的前沿研究和实际数据问题,(2)引导这些学生培养解决问题、协作和研究技能,这些技能在当今的工作环境中是如此关键。该项目的重点将是创建一系列以应用数据为导向的教学模块,以图像和数据分析问题为中心,包括图像去噪和去模糊、数据集群、数据配准、射线重建、气候模拟、扩散和波传播。这些单元将激励学生进行研究,并使学生对解决这些问题所需的数学理论有更深的理解和欣赏。该项目的目标是:(I)设计、开发、实施、评估和调整(根据需要)可移植的模块,以连接高分实数分析和线性代数的计算和理论方面;(Ii)建立一个专业网络,用于课堂测试和评估项目模块和教学策略;以及(Iii)为学生研究合作提供和利用各种场所。项目团队将进行研究,以评估这种动手数据驱动的方法如何为学生导向的学习提供新的途径,帮助学生为需要研究和数据技能的劳动力做好准备,提高学生的参与度和学习能力,并激励学生在理论和应用数学方面继续研究生学习。项目研究方法将包括纳入测试版,测试模块,然后收集和分析定量和定性数据。这项研究将包括对学生知识的测量,如课程评估,以及测量与数学相关的动机和自我效能的工具。该项目还将与来自全国四个机构的教师一起,调查材料和教学方法对各种机构的适应性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heather Moon其他文献

Heather Moon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heather Moon', 18)}}的其他基金

Collaborative Research: Data-Driven Applications Inspiring Upper-Division Mathematics
协作研究:数据驱动的应用程序启发高年级数学
  • 批准号:
    1642095
  • 财政年份:
    2016
  • 资助金额:
    $ 6.57万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 6.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 6.57万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 6.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 6.57万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 6.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 6.57万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 6.57万
  • 项目类别:
    Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 6.57万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 6.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323083
  • 财政年份:
    2024
  • 资助金额:
    $ 6.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了