Ultrafast Quantum Control in Molecules
分子中的超快量子控制
基本信息
- 批准号:1504584
- 负责人:
- 金额:$ 82.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The wide-ranging properties of substances around us (their different colors and smells, their taste, flammability, solubility, feel, toxicity) are tied closely to different physical arrangements of the atoms that define the molecules of the substance. When sunlight bleaches a shirt or aspirin relieves a headache, changes in molecular structure are responsible. Physicists model these arrangements of atoms in molecules as locations in a contour map called an "energy landscape" or a "potential energy surface." The stable atomic arrangements (the atomic arrangement for colored dye molecules, for example) are located in the valleys of the energy landscape. Chemical change, such as the change required to sun-bleach clothing dye, is a journey of the atomic positions from one valley to another. This NSF research project proposes a new way to guide the molecular journey by the use of laser light. Light doesn't move the atoms, but it can do something that is even better: it can change the shape of the energy landscape. Just like a bridge built over a gorge or a tunnel built through a mountain can reduce the difficulty of a journey over land, the new light-induced energy landscape can have shortcuts that encourage particular chemical changes. This project examines light-induced shortcuts at naturally occurring cross-roads in the energy landscapes. The new idea here is that laser light near these crossings, which are called "conical intersections," can employ quantum interference to guide the molecule. The remarkable prediction is that by changing the properties of the laser light, the molecule will switch from one path at the crossroads to the other. This basic scientific understanding about how light can encourage or inhibit chemical change could lead to applications such as light-activated pharmaceuticals.This project will investigate quantum control of trajectories nearby conical intersections (CIs), brought about by interference between the non-Born-Oppenheimer (NBO) couplings and laser-induced dipole couplings. The systems chosen for study are dissociation of singly ionized water and isomerization of doubly ionized acetylene. These are selected because they are hydrogen-rich small molecules with large NBO couplings and strong dipole couplings. The atomic motion will be launched by ionization of neutral water or acetylene using a high harmonics source of tunable vacuum ultraviolet radiation. The control field will be an ultrafast infrared laser pulse. The relative orientation of these NBO and dipole vector couplings can be inferred by mapping the momentum of dissociating fragments, or by Coulomb explosion imaging using a second intense infrared laser pulse following the reaction. The goal is to demonstrate control of the output channel via interference between NBO and dipole vector couplings, as revealed by the dependence of the dissociation or isomerization yield on the polarization, field strength, and frequency of the coupling field.
我们周围物质的广泛性质(它们不同的颜色和气味,它们的味道,易燃性,溶解性,手感,毒性)与定义物质分子的原子的不同物理排列密切相关。当阳光漂白衬衫或阿司匹林缓解头痛时,分子结构的变化是有原因的。物理学家将分子中原子的这些排列建模为等高线图中的位置,该等高线被称为“能量景观”或“势能面”。稳定的原子排列(例如,有色染料分子的原子排列)位于能量景观的山谷中。化学变化,如阳光漂白衣物染料所需的变化,是原子位置从一个山谷到另一个山谷的旅程。这项美国国家科学基金会的研究项目提出了一种利用激光引导分子旅程的新方法。光不会移动原子,但它可以做一些更好的事情:它可以改变能量格局的形状。就像在峡谷上修建一座桥或修建一条穿过山脉的隧道可以降低在陆地上旅行的难度一样,这种新的光致能源景观可以有促进特定化学变化的捷径。这个项目考察了能源景观中自然出现的十字路口上的光诱导捷径。这里的新想法是,这些交叉点附近的激光可以利用量子干涉来引导分子。这些交叉点被称为“锥形交叉点”。值得注意的预测是,通过改变激光的性质,分子将从十字路口的一条路径切换到另一条路径。这一关于光如何促进或抑制化学变化的基本科学理解可能会导致诸如光激活药物的应用。这个项目将研究由非Born-Oppenheimer(NBO)耦合和激光诱导的偶极耦合之间的干涉所带来的锥形交叉点(CI)附近轨迹的量子控制。选择的研究体系是单离子水的解离和双离子化乙炔的异构化。这些化合物之所以被选中,是因为它们是富含氢的小分子,具有大的NBO偶联和强偶极耦合。原子运动将通过使用可调谐真空紫外线辐射的高次谐波源电离中性水或乙炔来启动。控制场将是一个超快的红外激光脉冲。这些NBO和偶极矢量耦合的相对取向可以通过绘制解离碎片的动量图来推断,或者通过反应后使用第二个强红外激光脉冲的库仑爆炸成像来推断。我们的目标是通过NBO和偶极向量耦合之间的干扰来演示对输出通道的控制,如解离或异构化产率与耦合场的极化、场强和频率的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Bucksbaum其他文献
Philip Bucksbaum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Bucksbaum', 18)}}的其他基金
Ultrafast Strong-Field Control of Coherence and Entanglement in Atoms and Molecules
原子和分子相干和纠缠的超快强场控制
- 批准号:
2309238 - 财政年份:2023
- 资助金额:
$ 82.5万 - 项目类别:
Standard Grant
Laser Control of Quantum Evolution in Molecules
分子量子演化的激光控制
- 批准号:
1806145 - 财政年份:2018
- 资助金额:
$ 82.5万 - 项目类别:
Continuing Grant
Quantum Control of Light and Matter 2007 Gordon Research Conference
光与物质的量子控制 2007 年戈登研究会议
- 批准号:
0715429 - 财政年份:2007
- 资助金额:
$ 82.5万 - 项目类别:
Standard Grant
Quantum Control Gordon Research Conference
量子控制戈登研究会议
- 批准号:
0534157 - 财政年份:2005
- 资助金额:
$ 82.5万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: High and Ultrahigh Intensity CPA Lasers and Their Applications
美法合作研究:高强度和超高强度CPA激光器及其应用
- 批准号:
9805566 - 财政年份:1998
- 资助金额:
$ 82.5万 - 项目类别:
Continuing Grant
U.S.-Japan Joint Seminar: Manipulation of Matter by Coherent Light
美日联合研讨会:相干光操纵物质
- 批准号:
9603206 - 财政年份:1997
- 资助金额:
$ 82.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Study on light-field-driven dynamics for ultrafast control of quantum states of matter
用于物质量子态超快控制的光场驱动动力学研究
- 批准号:
23K13052 - 财政年份:2023
- 资助金额:
$ 82.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Probing 2D material properties using ultrafast Quantum Interference Control
使用超快量子干涉控制探测 2D 材料特性
- 批准号:
559996-2021 - 财政年份:2022
- 资助金额:
$ 82.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
Design and construction of an ultrafast near-infrared quantum control apparatus
超快近红外量子控制装置的设计与构建
- 批准号:
572303-2022 - 财政年份:2022
- 资助金额:
$ 82.5万 - 项目类别:
University Undergraduate Student Research Awards
Theory of quantum control of atomic/molecular ensembles by ultrafast electromagnetic fields
超快电磁场原子/分子系综量子控制理论
- 批准号:
RGPIN-2019-06387 - 财政年份:2022
- 资助金额:
$ 82.5万 - 项目类别:
Discovery Grants Program - Individual
Probing 2D material properties using ultrafast Quantum Interference Control
使用超快量子干涉控制探测 2D 材料特性
- 批准号:
559996-2021 - 财政年份:2021
- 资助金额:
$ 82.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
Theory of quantum control of atomic/molecular ensembles by ultrafast electromagnetic fields
超快电磁场原子/分子系综量子控制理论
- 批准号:
RGPIN-2019-06387 - 财政年份:2021
- 资助金额:
$ 82.5万 - 项目类别:
Discovery Grants Program - Individual
Superconducting weak links in next generation ultrafast and low power electronics for control and readout of quantum resonators arrays
用于控制和读出量子谐振器阵列的下一代超快低功率电子器件中的超导薄弱环节
- 批准号:
2813045 - 财政年份:2020
- 资助金额:
$ 82.5万 - 项目类别:
Studentship
Theory of quantum control of atomic/molecular ensembles by ultrafast electromagnetic fields
超快电磁场原子/分子系综量子控制理论
- 批准号:
RGPIN-2019-06387 - 财政年份:2020
- 资助金额:
$ 82.5万 - 项目类别:
Discovery Grants Program - Individual
Theory of quantum control of atomic/molecular ensembles by ultrafast electromagnetic fields
超快电磁场原子/分子系综量子控制理论
- 批准号:
RGPIN-2019-06387 - 财政年份:2019
- 资助金额:
$ 82.5万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast control of polarization by terahertz pulse excitation in electric ferroelectrics and quantum paraelectrics
通过太赫兹脉冲激发电铁电体和量子顺电体偏振的超快控制
- 批准号:
16K05402 - 财政年份:2016
- 资助金额:
$ 82.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)