Research Initiation Award: Superconvergence of Finite Element Approximations for the Second Order Elliptic Problems by L^2 Projection Methods
研究启动奖:L^2投影法对二阶椭圆问题有限元逼近的超收敛
基本信息
- 批准号:1505119
- 负责人:
- 金额:$ 18.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research Initiation Awards provide support for junior and mid-career faculty at Historically Black Colleges and Universities who are building new research programs or redirecting and rebuilding existing research programs. It is expected that the award helps to further the faculty member's research capability and effectiveness, improves research and teaching at her home institution, and involves undergraduate students in research experiences. The award to the University of Arkansas at Pine Bluff has potential broader impact in a number of areas. The project will focus on constructing a mathematical model on superconvergence of the nonconforming finite element method (NCFEM) for second-order elliptic problems by L-squared projection methods. This project will enhance the research experience and training of undergraduate students in mathematics at the institution. Additionally, a course in Finite Element Methods will be developed and offered as a topics course. The project will use L-squared projection methods to improve the convergence rate of an existing finite element solution so that the new approximation is closer to the exact solution than the existing finite element solution. The objectives are: to obtain mathematical theories for the superconvergence of NCFEM using various element spaces for the second order elliptic problems with the homogeneous essential Dirichlet and natural Neumann boundary conditions; to write computer programs to perform numerical approximations to support the theoretical results; and to investigate existing theoretical results for the superconvergence of the conforming finite element method for second-order elliptic problems by the L-squared projection method. Finally, mathematical theories will be tested with real world data for the Laplace and Poisson equations, which are used in modeling heat conduction, seepage through porous media, irrotational flow of ideal fluids, and other applications.
研究启动奖为传统黑人学院和大学的初级和中期职业教师提供支持,他们正在建立新的研究项目或重新指导和重建现有的研究项目。期望该奖项有助于进一步提高教师的研究能力和效率,改善其所在机构的研究和教学,并使本科生参与研究经验。该奖项授予派恩布拉夫的阿肯色大学,可能在许多领域产生更广泛的影响。本课题主要研究用l平方投影法建立二阶椭圆问题非协调有限元法超收敛的数学模型。此计划将提升本校数学专业本科生的研究经验及训练。此外,将开发一门有限元方法课程,并作为主题课程提供。该项目将使用l平方投影方法来提高现有有限元解的收敛速度,以便新的近似比现有的有限元解更接近精确解。目的是:得到具有齐次本质Dirichlet和自然Neumann边界条件的二阶椭圆型问题的NCFEM在各种元空间下的超收敛性的数学理论;编写计算机程序进行数值近似,以支持理论结果;利用l平方投影法研究二阶椭圆型问题的一致性有限元法的超收敛性的现有理论结果。最后,数学理论将用拉普拉斯和泊松方程的真实世界数据进行测试,这些方程用于模拟热传导,多孔介质的渗透,理想流体的无旋流以及其他应用。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical Experiments Using MATLAB: Superconvergence of Conforming Finite, Element Approximation for Second Order, Elliptic Problems
使用 MATLAB 进行数值实验:二阶椭圆问题的符合有限元逼近的超收敛
- DOI:10.4236/am.2018.96047
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Harris, Anna;Harris, Stephen;Gardner, Camille;Brock, Tyrone
- 通讯作者:Brock, Tyrone
QoS Parametric Inspection of Uniform and Assorted Trajectories for MANET Routing Protocols
MANET 路由协议的统一和分类轨迹的 QoS 参数检查
- DOI:10.4236/ijcns.2017.1010014
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Sehwani, Nitesh;Rahman, Sajid;Harris, Anna
- 通讯作者:Harris, Anna
Numerical Experiments Using MATLAB: Superconvergence of Nonconforming Finite Element Approximation for Second-Order Elliptic Problems
使用 MATLAB 的数值实验:二阶椭圆问题的非一致有限元逼近的超收敛
- DOI:10.4236/am.2016.717173
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Harris, Anna;Harris, Stephen;Rauls, Danielle
- 通讯作者:Rauls, Danielle
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Harris其他文献
Reconstruction, Replication and Re-enactment
重建、复制和重演
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
S. Dupré;Anna Harris;Julia Kursell;P. Lulof;Maartje Stols;Petra Tjitske Kalshoven;L. Carlyle;P. Lulof - 通讯作者:
P. Lulof
Superconvergence for discontinuous Galerkin finite element methods by L2-projection methods
L2 投影法的间断伽辽金有限元法的超收敛
- DOI:
10.1016/j.camwa.2012.11.013 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Rabeea Jari;Lin Mu;Anna Harris;Lynn Fox - 通讯作者:
Lynn Fox
Sensing and the Shadows: Invisible Work in Medical Education in the Netherlands
感知与阴影:荷兰医学教育中的隐形工作
- DOI:
10.1080/01459740.2023.2211272 - 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
Anna Harris - 通讯作者:
Anna Harris
Initial management of open fractures in A&E
- DOI:
10.1016/j.ijsu.2013.06.397 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:
- 作者:
Jonathon Black;Anna Harris;Francesca Saddington;Hamid Rokan;Chellappan Sivaji - 通讯作者:
Chellappan Sivaji
Anna Harris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Harris', 18)}}的其他基金
Targeted Infusion Project: Infusion of Cyber, Research, and Peer-Led Team Learning to Enhance Minority STEM Majors' Mathematics Performance and Coding Experience
有针对性的注入项目:注入网络、研究和同行领导的团队学习,以提高少数 STEM 专业学生的数学表现和编码经验
- 批准号:
2010292 - 财政年份:2020
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Targeted Infusion Project: Infusion of Evidence-Based Strategies to Enhance STEM Majors' Mathematics Performance
针对性注入项目:注入循证策略以提高 STEM 专业学生的数学成绩
- 批准号:
1818440 - 财政年份:2018
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
相似海外基金
Research Initiation Award: Integrated Approach Toward Examining Fecal Indicator Bacteria Trends in a Coastal Watershed
研究启动奖:检查沿海流域粪便指示细菌趋势的综合方法
- 批准号:
2300319 - 财政年份:2023
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
- 批准号:
2247163 - 财政年份:2023
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Research Initiation Award: A GNN+BiMCLSTM Based Framework to Model, Predict, and Traceback Malware Strains
研究启动奖:基于 GNN BiMCLSTM 的框架,用于建模、预测和追溯恶意软件菌株
- 批准号:
2300405 - 财政年份:2023
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
- 批准号:
2300445 - 财政年份:2023
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Research Initiation Award: Highly Stable Nanoparticle-Doped Metal-Organic Frameworks for Applications in Water Purification
研究启动奖:用于水净化应用的高度稳定的纳米颗粒掺杂金属有机框架
- 批准号:
2344742 - 财政年份:2023
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Research Initiation Award: Implementing the Next-Generation IoT Ecosystem with AI Capabilities
研究启动奖:利用人工智能能力实施下一代物联网生态系统
- 批准号:
2200377 - 财政年份:2023
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Research Initiation Award: Thermal Decomposition of Four-membered Heterocyclic Peroxides, Data Mining in Nonadiabatic Trajectories, and Chemiexcitation Efficiency
研究启动奖:四元杂环过氧化物的热分解、非绝热轨迹数据挖掘、化学激发效率
- 批准号:
2300321 - 财政年份:2023
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Research Initiation Award: Analysis of Glycoprotein Composition and Function of PGE2 EP Receptors in Mammary-derived Cells
研究启动奖:乳腺细胞中 PGE2 EP 受体的糖蛋白组成和功能分析
- 批准号:
2300448 - 财政年份:2023
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Research Initiation Award: Investigating Instructional Conditions for Robust Learning in Biology
研究启动奖:研究生物学稳健学习的教学条件
- 批准号:
2300454 - 财政年份:2023
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant
Research Initiation Award: Exploring Class A G-Protein Coupled Receptors (GPCRs)-Ligand Interaction through Machine Learning Approaches
研究启动奖:通过机器学习方法探索 A 类 G 蛋白偶联受体 (GPCR)-配体相互作用
- 批准号:
2300475 - 财政年份:2023
- 资助金额:
$ 18.73万 - 项目类别:
Standard Grant