Studies of Singularities, Black Holes and Gravitational Radiation
奇点、黑洞和引力辐射的研究
基本信息
- 批准号:1505565
- 负责人:
- 金额:$ 14.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-15 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will study two aspects of gravity: (1) gravitational collapse and (2) gravitational radiation. (1) When an object's gravity becomes strong enough to trap light, the object becomes a black hole. Inside the black hole the object continues to become smaller and smaller under the influence of its own gravity until it becomes a point with infinite density and infinite gravitational field called a singularity. I will work out the properties of the singularities formed in gravitational collapse, and in particular the forces felt by any observer who approaches the singularity. (2) Just as the electric currents in a radio transmitter make radio waves, so moving masses make gravity waves. And just as radio receivers react to the presence of radio waves, so there is an ongoing effort to detect gravitational waves. One interesting aspect of gravitational radiation is something called gravitational wave memory: even after the wave has passed, there is a permanent change in the gravitational wave detector. I will study the causes and properties of this gravitational wave memory.It is conjectured that the singularity inside a black hole consists of two parts: a spacelike singularity at the center of the black hole and a null singularity that takes the place of the black hole's inner horizon. I will study both types of singularities using two different numerical methods. Previously, I have performed simulations of spacelike singularities; however these simulations revealed the presence of structure with a very small spatial scale (called "spikes") that was not resolved by the simulations. I will revisit these simulations using the technique of adaptive mesh refinement, which should serve to resolve the spikes. I will compare the results of these simulations to those of an analytic approximation to spike behavior using what are expected to be the leading terms of the field equations near the singularity. I will study null singularities using a "double null" formulation of the Einstein field equations. Here instead of the usual foliation of spacetime by spacelike surfaces of constant time t, one has a foliation by pairs of null surfaces of constant null coordinates u and v. The Einstein field equations and Bianchi identities then become equations for the expansion and shear of the null surfaces and the Weyl tensor. I will perform numerical simulations of these equations to see whether the Weyl tensor blows up on (what used to be) the inner horizon of the black hole. I will study gravitational wave memory from a variety of sources using a variety of methods. Memory from neutrinos will be treated using the full nonlinear Einstein-Vlasov equations. Memory in an expanding universe will be treated using cosmological perturbation theory. Memory for the vacuum case will be treated in second order perturbation theory. I will also study critical gravitational collapse using a new vacuum axixymmetric code. In addition, I will continue, using numerical methods, my studies of Einstein-Aether theory, gravitational collapse in anti de-Sitter spacetime, and charged black holes.
本项目将研究引力的两个方面:(1)引力坍缩和(2)引力辐射。 (1)当一个物体的引力变得足够强,足以捕获光时,这个物体就变成了黑洞。 在黑洞内部,物体在自身引力的影响下继续变得越来越小,直到成为一个具有无限密度和无限引力场的点,称为奇点。 我将计算出引力坍缩中形成的奇点的性质,特别是任何接近奇点的观察者所感受到的力。 (2)就像无线电发射机中的电流产生无线电波一样,运动的物体产生引力波。 就像无线电接收器对无线电波的存在做出反应一样,人们正在努力探测引力波。 引力辐射的一个有趣的方面是所谓的引力波记忆:即使在波通过之后,引力波探测器也会发生永久性的变化。我们将研究这种引力波记忆的原因和性质,并证明黑洞内部的奇点由两部分组成:位于黑洞中心的类空奇点和代替黑洞内视界的零奇点。我将使用两种不同的数值方法来研究这两种类型的奇点。 在此之前,我已经进行了类空奇点的模拟;然而,这些模拟揭示了具有非常小的空间尺度(称为“尖峰”)的结构的存在,这些结构没有被模拟解决。 我将使用自适应网格细化技术重新审视这些模拟,这应该有助于解决尖峰。 我将比较这些模拟的结果与那些使用奇点附近的场方程的主导项的尖峰行为的解析近似。 我将使用爱因斯坦场方程的“双零”公式来研究零奇点。 在这里,时空的叶理不是通常的由时间t恒定的类空曲面构成的,而是由零坐标u和v恒定的零曲面对构成的。爱因斯坦场方程和比安奇恒等式就变成了零曲面和外尔张量的展开和剪切的方程。 我将对这些方程进行数值模拟,看看外尔张量是否会在黑洞的内视界(曾经是)爆炸。 我将使用各种方法从各种来源研究引力波存储器。 中微子的记忆将用完全非线性的爱因斯坦-弗拉索夫方程来处理。 我们将用宇宙微扰论来处理膨胀宇宙中的记忆。 真空情况下的记忆将在二阶微扰理论中处理。 我也将使用一个新的真空轴对称代码来研究临界引力坍缩。 此外,我将继续使用数值方法,我的研究爱因斯坦-以太理论,引力坍缩在反德西特时空,和带电黑洞。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The shape of the orbit in FLRW spacetimes
FLRW 时空中的轨道形状
- DOI:10.1088/2399-6528/aaeaf9
- 发表时间:2018
- 期刊:
- 影响因子:1.2
- 作者:Garfinkle, David;Mead, Lawrence R;Ringermacher, H I
- 通讯作者:Ringermacher, H I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Garfinkle其他文献
On the possibility of a box for holding gravitational radiation in thermal equilibrium
- DOI:
10.1007/bf00761904 - 发表时间:
1985-05-01 - 期刊:
- 影响因子:2.800
- 作者:
David Garfinkle;Robert M. Wald - 通讯作者:
Robert M. Wald
Fields due to kinky, cuspless, cosmic loops.
由于扭曲、无尖角、宇宙环而产生的场。
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
David Garfinkle;T. Vachaspati - 通讯作者:
T. Vachaspati
Detection of computer generated gravitational waves in numerical cosmologies
- DOI:
10.1007/bf02105076 - 发表时间:
1995-05-01 - 期刊:
- 影响因子:2.800
- 作者:
Beverly K. Berger;David Garfinkle;Vijaya Swamy - 通讯作者:
Vijaya Swamy
Matters of Gravity, The Newsletter of the Topical Group in Gravitation of the American Physical Society, Volume 28, Fall 2006
Matters of Gravity,美国物理学会引力主题小组时事通讯,第 28 卷,2006 年秋季
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
David Garfinkle - 通讯作者:
David Garfinkle
Resolving a gravitational wave memory paradox
- DOI:
10.1007/s10714-015-1924-2 - 发表时间:
2015-06-23 - 期刊:
- 影响因子:2.800
- 作者:
David Garfinkle;István Rácz - 通讯作者:
István Rácz
David Garfinkle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Garfinkle', 18)}}的其他基金
Studies of Singularities, Black Holes, and Gravitational Radiation
奇点、黑洞和引力辐射的研究
- 批准号:
2102914 - 财政年份:2021
- 资助金额:
$ 14.03万 - 项目类别:
Standard Grant
Studies of Singularities, Black Holes, and Gravitational Radiation
奇点、黑洞和引力辐射的研究
- 批准号:
1806219 - 财政年份:2018
- 资助金额:
$ 14.03万 - 项目类别:
Continuing Grant
Numerical Studies of Singularities and Black Holes
奇点和黑洞的数值研究
- 批准号:
1205202 - 财政年份:2012
- 资助金额:
$ 14.03万 - 项目类别:
Continuing Grant
Numerical studies of singularities and black holes
奇点和黑洞的数值研究
- 批准号:
0855532 - 财政年份:2009
- 资助金额:
$ 14.03万 - 项目类别:
Standard Grant
Studies of Singularities and Black Holes
奇点和黑洞的研究
- 批准号:
0456655 - 财政年份:2005
- 资助金额:
$ 14.03万 - 项目类别:
Continuing Grant
相似海外基金
Black holes, horizons and singularities
黑洞、视界和奇点
- 批准号:
RGPIN-2020-03889 - 财政年份:2022
- 资助金额:
$ 14.03万 - 项目类别:
Discovery Grants Program - Individual
Investigation of weak null singularities inside spherically symmetric black holes in the presence of matter fields
研究存在物质场的球对称黑洞内部的弱零奇点
- 批准号:
2771429 - 财政年份:2022
- 资助金额:
$ 14.03万 - 项目类别:
Studentship
Stability of Black Holes and the Nature of Singularities in General Relativity
广义相对论中黑洞的稳定性和奇点的性质
- 批准号:
RGPIN-2021-02562 - 财政年份:2022
- 资助金额:
$ 14.03万 - 项目类别:
Discovery Grants Program - Individual
Black holes, horizons and singularities
黑洞、视界和奇点
- 批准号:
RGPIN-2020-03889 - 财政年份:2021
- 资助金额:
$ 14.03万 - 项目类别:
Discovery Grants Program - Individual
Stability of Black Holes and the Nature of Singularities in General Relativity
广义相对论中黑洞的稳定性和奇点的性质
- 批准号:
DGECR-2021-00093 - 财政年份:2021
- 资助金额:
$ 14.03万 - 项目类别:
Discovery Launch Supplement
Studies of Singularities, Black Holes, and Gravitational Radiation
奇点、黑洞和引力辐射的研究
- 批准号:
2102914 - 财政年份:2021
- 资助金额:
$ 14.03万 - 项目类别:
Standard Grant
Stability of Black Holes and the Nature of Singularities in General Relativity
广义相对论中黑洞的稳定性和奇点的性质
- 批准号:
RGPIN-2021-02562 - 财政年份:2021
- 资助金额:
$ 14.03万 - 项目类别:
Discovery Grants Program - Individual
Black holes, horizons and singularities
黑洞、视界和奇点
- 批准号:
RGPIN-2020-03889 - 财政年份:2020
- 资助金额:
$ 14.03万 - 项目类别:
Discovery Grants Program - Individual
Singularities and Black Holes in General Relativity
广义相对论中的奇点和黑洞
- 批准号:
1900288 - 财政年份:2019
- 资助金额:
$ 14.03万 - 项目类别:
Continuing Grant
Studies of Singularities, Black Holes, and Gravitational Radiation
奇点、黑洞和引力辐射的研究
- 批准号:
1806219 - 财政年份:2018
- 资助金额:
$ 14.03万 - 项目类别:
Continuing Grant