RUI: Low-Energy Electron Scattering From Uracil and Thymine

RUI:尿嘧啶和胸腺嘧啶的低能电子散射

基本信息

项目摘要

Since the early 2000's it has been understood that free electrons in biological environments are able to interact with, and cause damage to, DNA (deoxyribonucleic acid). This is in spite of the generally slow speeds of these electrons. This finding carried significant implications in various fields of biomedicine, in particular those that employ radiation as a therapeutic measure. This is due to the fact that such radiation creates free electrons within the body, which effectively constitutes a secondary radiation dose. However, to this day the effect of these electrons is largely excluded from most dosage calculations, in part due to the paucity of fundamental data describing how free electrons interact with molecules that make up DNA. Experimental physics techniques to measure electron interaction "cross sections," a quantity that describes the chemistry of a molecule by characterizing its physical size and shape, are well established for many targets. These techniques require molecules to be in the gas phase, however, whereas commercial samples of most biological molecules are solids (powders) at room temperature. While changing a substance from solid to gas is possible by simply heating it, this approach is incompatible with other crucial aspects of most standard experimental techniques. The research supported by this project will commission a new apparatus that will employ new measurement techniques, compatible with heated samples, to make measurements of electron interactions with DNA molecules. Improving our fundamental understanding of electron interactions with biological molecules will allow the effects of radiation on biological material to be more accurately included into radiation dosage calculations, which may ultimately enable the radiation to be better targeted to where it is needed most.This project will commission a new electron scattering spectrometer for the purpose of making measurements of the total, total elastic, and elastic differential cross sections for the nucleobases, with a view to making measurements of uracil and thymine within the time frame of the current project. Under this project, a beam of electrons is sent through a large volume of a heated gas cell containing a vapor of the target under consideration. The use of a large volume cell, rather than a traditional crossed beam technique, allows for a sufficient number of electron-target interactions to achieve reasonable statistics in the signal, and removes complications with normalizing the measurements since the target volume and density are easily characterized. However, the approach defeats using the detector location to determine the final state momentum of the scattered particle, as the scattering location is not well localized. Instead, this work will employ a modified version of the "magnetic beamline" technique, pioneered at the University of California San Diego for studies of positron interactions with atoms and molecules, whereby a strong magnetic field guides all scattered electrons along the spectrometer axis to a detector, and a retarding electric field is used to determine their momentum components parallel to and perpendicular to the spectrometer axis, thus determining their final state momentum. In addition to making these measurements on nucleobase molecules, this project will demonstrate improvements to the magnetic beamline technique, by demonstrating methods for generating high energy-resolution electron beams in strong magnetic fields. In addition, this work aims to use fast pulsing techniques to address the loss of information that is currently inherent in the technique due to reflection of electrons scattered in the backwards scattering direction.
自2000年代初以来,人们已经了解到生物环境中的自由电子能够与DNA(脱氧核糖核酸)相互作用并对其造成损害。尽管这些电子的速度通常很慢。这一发现对生物医学的各个领域都具有重要意义,特别是那些采用辐射作为治疗措施的领域。这是因为这种辐射在体内产生自由电子,这实际上构成了二次辐射剂量。然而,直到今天,这些电子的影响在很大程度上被排除在大多数剂量计算之外,部分原因是缺乏描述自由电子如何与组成DNA的分子相互作用的基本数据。测量电子相互作用“截面”的实验物理技术,通过表征其物理尺寸和形状来描述分子的化学性质的量,已经为许多目标建立了良好的基础。然而,这些技术要求分子处于气相,而大多数生物分子的商业样品在室温下是固体(粉末)。 虽然通过简单地加热就可以将物质从固体变成气体,但这种方法与大多数标准实验技术的其他关键方面不兼容。该项目支持的研究将委托一个新的设备,该设备将采用与加热样品兼容的新测量技术,以测量电子与DNA分子的相互作用。提高我们对电子与生物分子相互作用的基本理解,将使辐射对生物材料的影响更准确地纳入辐射剂量计算,最终使辐射能够更好地瞄准最需要的地方。该项目将委托一台新的电子散射光谱仪,用于测量生物材料的总弹性,以及核碱基的弹性微分截面,以期在本项目的时间范围内对尿嘧啶和胸腺嘧啶进行测量。在这个项目中,一束电子被发送通过一个大体积的加热的气体电池,其中包含所考虑的目标的蒸汽。使用大体积单元而不是传统的交叉射束技术允许足够数量的电子-靶相互作用以实现信号中的合理统计,并且消除了归一化测量的复杂性,因为靶体积和密度容易表征。然而,该方法使用检测器位置来确定散射粒子的最终状态动量失败,因为散射位置没有很好地局部化。相反,这项工作将采用“磁束线”技术的修改版本,该技术在加州圣地亚哥大学开创,用于研究正电子与原子和分子的相互作用,从而强磁场将所有散射电子沿着光谱仪轴引导到检测器,并使用减速电场来确定它们平行于和垂直于光谱仪轴的动量分量,从而确定它们的最终状态动量。除了对核碱基分子进行这些测量外,该项目还将通过演示在强磁场中产生高能量分辨率电子束的方法来演示磁束线技术的改进。此外,这项工作的目的是使用快速脉冲技术,以解决信息的损失,这是目前固有的技术,由于在向后散射方向散射的电子的反射。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leigh Hargreaves其他文献

Leigh Hargreaves的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
  • 批准号:
    82271095
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
  • 批准号:
    82270883
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
  • 批准号:
    82270588
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    54.7 万元
  • 项目类别:
    面上项目
circEFEMP1招募PRC2促进HOXA6启动子组蛋白甲基化修饰调控Claudin4-Low型TNBC迁移侵袭和转移的作用机制
  • 批准号:
    82002807
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
上皮间质转化在Numb-/low前列腺癌细胞雄激素非依赖性中的作用及机制
  • 批准号:
    82003061
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Bach2调控CD45RA-Foxp3low T细胞影响B细胞功能及其在系统性红斑狼疮中作用的机制研究
  • 批准号:
    81873863
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

RUI: Low Energy Electron Scattering from Fundamental Molecular and Atomic Targets
RUI:来自基本分子和原子目标的低能电子散射
  • 批准号:
    1911702
  • 财政年份:
    2019
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
RUI: The Role of Low-Energy Electrons in High-Energy Radiolysis
RUI:低能电子在高能辐射分解中的作用
  • 批准号:
    1012674
  • 财政年份:
    2010
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
RUI: Collaborative Research: Experimental and Theoretical/Computational Studies of Low Energy Electron Collisions with Molecules
RUI:合作研究:低能电子与分子碰撞的实验和理论/计算研究
  • 批准号:
    0968874
  • 财政年份:
    2010
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
RUI: Role of Scalar Mesons in Low-Energy QCD and their Connections to Non-Perturbative Higgs Dynamics
RUI:标量介子在低能 QCD 中的作用及其与非微扰希格斯动力学的联系
  • 批准号:
    0652853
  • 财政年份:
    2007
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
RUI: Low Temperature Energy Transfer Studies of Interstellar Species
RUI:星际物种的低温能量转移研究
  • 批准号:
    0653175
  • 财政年份:
    2007
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
RUI: Low Energy Positronium Interactions with Atoms and Molecules in a Gas Environment
RUI:气体环境中低能正电子与原子和分子的相互作用
  • 批准号:
    0555631
  • 财政年份:
    2006
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
MRI/RUI Acquisition of an additional low-energy grating for the existing monochromator on the atomic and molecular physics beam line 10.0.1 at the Advanced Light Source
MRI/RUI 在先进光源的原子和分子物理光束线 10.0.1 上为现有单色仪额外采购一个低能光栅
  • 批准号:
    0321055
  • 财政年份:
    2003
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
RUI: Development of a Position Resolving High Count Rate Detector System for Low Energy Nuclear Physics
RUI:低能核物理位置分辨高计数率探测器系统的开发
  • 批准号:
    0216345
  • 财政年份:
    2002
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
RUI: Experiments in Low Energy Nuclear Physics and Nuclear Astrophysics
RUI:低能核物理和核天体物理实验
  • 批准号:
    0072314
  • 财政年份:
    2000
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
RUI: Synthesis and Optical Spectroscopy of Low Phonon Energy Materials
RUI:低声子能量材料的合成和光谱学
  • 批准号:
    9970055
  • 财政年份:
    1999
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了