RUI:CMMT:Multiscale Theory of Nano-Porous Electronic Materials: Case Study of Structure-leakage Relationships in Silicon Carbide Alloys
RUI:CMMT:纳米多孔电子材料的多尺度理论:碳化硅合金中结构-泄漏关系的案例研究
基本信息
- 批准号:1506403
- 负责人:
- 金额:$ 16.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYThis award supports theoretical and computational research and education aimed at understanding the electronic transport properties of nano-porous electronic materials, which are solid materials that have many tiny holes distributed throughout their interior so that their density is greatly reduced. Similar to the function of the air gap in a double paned window in improving its insulating properties, these pores improve the insulating properties of the material for electron transport. In this project, the PI and his team will develop a theory, valid across many orders of length scales, for investigating the electronic properties of nano-porous silicon carbide, a material which is being developed by the electronics industry as an insulator for high performance electronic devices, such as the processing chips used in laptops, cell phones and supercomputers. The goal is to determine the influence of impurities and microscopic defects naturally occurring in these systems on the macroscopic device operation. The approach will be to use very accurate quantum mechanical methods to study defects in small model systems and to develop larger models, based on information from these small model calculations, to predict the electronic transport properties of actual devices. The team will work in close collaboration with leading experimentalists to allow a feedback loop between theory and experiment.This project will involve educating undergraduate and graduate students through research and related activities. Two undergraduates will visit research institutions to be trained by scientists from collaborating groups. Research results will be presented at meetings and work will be shared with industry representatives. The results from this project will be placed in context of related work and presented in a day-long workshop accessible to a wide audience including high school teachers, college students and faculty.TECHNICAL SUMMARYThis award supports theoretical and computational research and education aimed at understanding the microstructural point defects that cause leakage in hydrogenated amorphous silicon carbide (a-SiC) alloys, which are important materials employed in nano-electronics and electro-mechanics applications. Specifically, in highly integrated circuits, such alloys serve as a back-end-of-the-line dielectric material. The PI and his team will use state-of-the-art density functional calculations and other computational methods in combination with experimental data to elucidate the properties of defects in device quality samples. Based on recent experimental studies that have led to a wealth of new information on leakage currents in devices incorporating hydrogenated a-SiC, new microscopic models will be developed to match the range of experimental densities. Monte Carlo modeling methods will be used to explore the variable chemical arrangements found experimentally. Using the new microscopic models, the PI and his team will explore candidate point defects, characterize their properties, and find a match to the experimental leakage data. The results of the defect calculations will be incorporated into macroscopic leakage models with length scales matching the experimental systems and help in the development of a density of states thermodynamic model for hydrogen bonding in hydrogenated a-SiC. The computational work will be performed in close collaboration with leading experimentalists to allow a feedback loop between theory and experiment. The results will be valuable for developing new low-density hydrogenated a-SiC for nano-electronics applications, and for designing new amorphous nanomaterials.This project will involve educating undergraduate and graduate students through research and related activities. Two undergraduates will visit research institutions to be trained by scientists from collaborating groups. Research results will be presented at meetings and work will be shared with industry representatives. The results from this project will be placed in context of related work and presented in a day-long workshop accessible to a wide audience including high school teachers, college students and faculty.
非技术总结该奖项支持旨在了解纳米多孔电子材料的电子传输特性的理论和计算研究和教育,这种材料是固体材料,其内部分布着许多微孔,因此其密度大大降低。类似于双层玻璃窗中的气隙在改善其绝缘性能方面的作用,这些气孔改善了用于电子传输的材料的绝缘性能。在这个项目中,PI和他的团队将开发一种理论,适用于许多个数量级的长度尺度,用于研究纳米多孔碳化硅的电子性能,这种材料正由电子行业开发,用作高性能电子设备的绝缘体,如笔记本电脑、手机和超级计算机中使用的处理芯片。目的是确定这些系统中自然产生的杂质和微观缺陷对宏观器件运行的影响。该方法将使用非常精确的量子力学方法来研究小模型系统中的缺陷,并基于来自这些小模型计算的信息来开发更大的模型,以预测实际设备的电子传输特性。该团队将与领先的实验专家密切合作,在理论和实验之间建立反馈循环。这个项目将通过研究和相关活动来教育本科生和研究生。两名本科生将参观研究机构,接受来自合作小组的科学家的培训。研究成果将在会议上展示,并将与行业代表分享工作。这个项目的成果将被放在相关工作的背景下,并在一个为期一天的研讨会上展示,广大观众包括高中教师、大学生和教师。技术总结该奖项支持旨在了解导致氢化非晶态碳化硅(a-SiC)合金泄漏的微结构点缺陷的理论和计算研究和教育,氢化非晶碳化硅合金是纳米电子和机电应用中的重要材料。具体地说,在高度集成的电路中,这种合金充当线路后端的介质材料。PI和他的团队将使用最先进的密度泛函计算和其他计算方法,结合实验数据来阐明器件质量样品中缺陷的特性。在最近的实验研究的基础上,我们将开发新的微观模型,使之与实验密度范围相匹配。这些实验研究提供了大量有关氢化非晶硅器件泄漏电流的新信息。蒙特卡罗模拟方法将被用来探索实验中发现的各种化学排列。使用新的微观模型,Pi和他的团队将探索候选点缺陷,表征其特性,并找到与实验泄漏数据相匹配的数据。缺陷计算的结果将被合并到长度尺度与实验系统相匹配的宏观泄漏模型中,并有助于建立氢化a-SiC中氢键的态密度热力学模型。计算工作将与领先的实验者密切合作,以便在理论和实验之间建立反馈循环。研究结果将对开发新型低密度氢化硅纳米材料和设计新型非晶态纳米材料具有重要意义。该项目将通过研究和相关活动培养本科生和研究生。两名本科生将参观研究机构,接受来自合作小组的科学家的培训。研究成果将在会议上展示,并将与行业代表分享工作。该项目的成果将放在相关工作的背景下,并在为期一天的研讨会上介绍,广大受众包括高中教师、大学生和教职员工。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Blair Tuttle其他文献
Examining composition-dependent radiation response in AlGaN alloys
研究氮化铝镓合金中与成分相关的辐射响应
- DOI:
10.1016/j.actamat.2025.120891 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.300
- 作者:
Miaomiao Jin;Farshid Reza;Alexander Hauck;Mahjabin Mahfuz;Xing Wang;Rongming Chu;Blair Tuttle - 通讯作者:
Blair Tuttle
Blair Tuttle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Blair Tuttle', 18)}}的其他基金
RUI: CMMT: Computational Study of Ternary Metal Halides for Optoelectronics: Structural, Electrical and Defect Properties
RUI:CMMT:光电子学用三元金属卤化物的计算研究:结构、电气和缺陷特性
- 批准号:
2127473 - 财政年份:2021
- 资助金额:
$ 16.78万 - 项目类别:
Continuing Grant
相似海外基金
CMMT: Slave-boson approach for electronically correlated metal oxides
CMMT:电子相关金属氧化物的从属玻色子方法
- 批准号:
2237469 - 财政年份:2022
- 资助金额:
$ 16.78万 - 项目类别:
Continuing Grant
RUI: CMMT: Computational Study of Ternary Metal Halides for Optoelectronics: Structural, Electrical and Defect Properties
RUI:CMMT:光电子学用三元金属卤化物的计算研究:结构、电气和缺陷特性
- 批准号:
2127473 - 财政年份:2021
- 资助金额:
$ 16.78万 - 项目类别:
Continuing Grant