Nanostructured Electrochemical Materials

纳米结构电化学材料

基本信息

  • 批准号:
    1506640
  • 负责人:
  • 金额:
    $ 59.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: In this project, tin oxide-coated carbon nanotubes are being used as a model material to investigate the mechanism for lithium storage. Tin oxide is considered one of the most promising metal-oxide anode materials for lithium ion batteries due to its high lithium ion storage capacity. However, the practical application of tin oxide as anode material is restricted by its large volume change (up to 300%) during charge-discharge cycles, which can cause its disintegration and electrical disconnection from the current collector. To circumvent this problem, a three-dimensional carbon nanotube-tin oxide core-shell nanowire array is being developed by growing tin oxide shells on vertically-aligned carbon nanotubes. The carbon nanotubes serve as the backbone of the tin oxide shell to buffer the large volume change, while the cylindrical tin oxide shell alleviates its degradation during the lithiation process. This project's outcomes will be beneficial to conventional lithium ion battery research and development, as well as on-chip micropower development. A better understanding of the electrochemical properties is making a significant contribution to the development and rational design of three-dimensional hierarchical electrode nanomaterials for lithium ion batteries. Each year, these researchers provide two public lectures to convey new knowledge of material science and technology. A diverse set of students are engaged in the research at Florida International University, a Hispanic-Serving Institution. Each year, graduate and undergraduate students participate in the research, and they have the opportunity to work at Sandia National Laboratories. Annually, 60 high school students and 10 high school teachers are invited for on-campus lab tours and research demonstrations. TECHNICAL DETAILS: Carbon nanotube-metal oxide core-shell composite materials are promising candidates for application as anode materials in lithium ion batteries. However, the electrochemical lithiation-delithiation behavior and mechanism of this type of materials remain unclear. A comprehensive understanding of the lithiation mechanism at the nanoscale benefits the design and development of high-performance lithium ion battery materials. This project develops a synergistic approach for the synthesis and characterization of vertically aligned carbon nanotube-tin oxide core-shell nanowire arrays to manipulate their electrochemical property at the time of synthesis. The vertically-aligned carbon nanotube arrays are synthesized directly on a current collector using plasma enhanced chemical vapor deposition, and the tin oxide shell on the carbon nanotubes is synthesized via chemical-solution and vapor deposition routes. The microstructure and the electrochemical properties of the carbon nanotube-tin oxide core-shell nanowires are being investigated by a combination of electron microscopy, electron energy loss spectroscopy, energy dissipation spectroscopy, X-ray diffraction (both in situ and ex situ), charge-discharge measurement, cyclic voltammetry, electrochemical impedance spectroscopy, and in situ transmission electron microscopy observation of the lithiation process. The study provides a better understanding of the lithiation mechanism of the core-shell nanowire array and the influence of their microstructure on their electrochemical properties. The research results provide new insight into the electrochemical process of carbon nanotube-metal oxide composite materials in lithium ion batteries. Graduate and undergraduate students receive research training in advanced electrochemical material synthesis, characterization and design.
非技术描述:在这个项目中,氧化锡涂层的碳纳米管被用作模型材料来研究锂的储存机制。氧化锡由于具有较高的锂离子存储容量,被认为是锂离子电池最有前途的金属氧化物负极材料之一。然而,氧化锡作为阳极材料的实际应用受到其在充放电循环中体积变化大(可达300%)的限制,这可能导致其分解和与集流器的电断开。为了解决这一问题,在垂直排列的碳纳米管上生长氧化锡壳,形成了三维碳纳米管-氧化锡核-壳纳米线阵列。碳纳米管作为氧化锡壳的骨架,缓冲了较大的体积变化,而圆柱形氧化锡壳则减轻了氧化锡壳在锂化过程中的降解。该项目的成果将有利于常规锂离子电池的研发,以及片上微电源的开发。对锂离子电池三维分层电极纳米材料电化学性能的深入了解,对其开发和合理设计具有重要意义。这些研究人员每年提供两次公开讲座,以传达材料科学与技术的新知识。佛罗里达国际大学(Florida International University)是一所为西班牙裔服务的机构,参与这项研究的学生各不相同。每年,研究生和本科生都参与这项研究,他们有机会在桑迪亚国家实验室工作。每年,60名高中生和10名高中教师被邀请进行校园实验室参观和研究演示。技术细节:碳纳米管-金属氧化物核壳复合材料是锂离子电池负极材料的理想选择。然而,这类材料的电化学锂化-衰减行为和机理尚不清楚。对纳米级锂化机理的全面了解有助于高性能锂离子电池材料的设计和开发。该项目开发了一种协同方法来合成和表征垂直排列的碳纳米管-氧化锡核-壳纳米线阵列,以在合成时操纵其电化学性能。采用等离子体增强化学气相沉积的方法在集流器上直接合成了垂直排列的碳纳米管阵列,并通过化学溶液和气相沉积的方法在碳纳米管上合成了氧化锡外壳。采用电子显微镜、电子能量损耗谱、能量耗散谱、x射线衍射(原位和非原位)、充放电测量、循环伏安法、电化学阻抗谱和原位透射电镜观察锂化过程,研究了碳纳米管-氧化锡核-壳纳米线的微观结构和电化学性能。该研究有助于更好地了解核壳纳米线阵列的锂化机理及其微观结构对电化学性能的影响。研究结果为研究碳纳米管-金属氧化物复合材料在锂离子电池中的电化学过程提供了新的思路。研究生和本科生接受高级电化学材料合成、表征和设计方面的研究培训。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ni3S2 nanowires filled carbon nanotubes of ultra-high quality: Synthesis methods, structure, and electrical properties
  • DOI:
    10.1016/j.diamond.2022.109156
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Y. Poudel;Xu Zhao;K. Jungjohann;Arun Thapa;Rui Guo;Wenzhi Li
  • 通讯作者:
    Y. Poudel;Xu Zhao;K. Jungjohann;Arun Thapa;Rui Guo;Wenzhi Li
Enhancing the performance of the perovskite solar cells by modifying the SnO2 electron transport layer
通过修饰 SnO2 电子传输层提高钙钛矿太阳能电池的性能
  • DOI:
    10.1016/j.jpcs.2023.111532
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Dahal, Biplav;Guo, Rui;Pathak, Rajesh;Rezaee, Melorina Dolafi;Elam, Jeffrey W.;Mane, Anil U.;Li, Wenzhi
  • 通讯作者:
    Li, Wenzhi
Exploring the performance of perovskite solar cells with dual hole transport layers via SCAPS-1D simulation
  • DOI:
    10.1016/j.mtcomm.2023.106846
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Biplav Dahal;M. D. Rezaee;Ram Chandra Gotame;Wenzhi Li
  • 通讯作者:
    Biplav Dahal;M. D. Rezaee;Ram Chandra Gotame;Wenzhi Li
Nickel sulfide nanowire-filled carbon nanotubes as electrocatalysts for efficient hydrogen evolution reaction
  • DOI:
    10.1016/j.ijhydene.2023.10.171
  • 发表时间:
    2023-12-14
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Gotame,Ram Chandra;Poudel,Yuba Raj;Li,Wenzhi
  • 通讯作者:
    Li,Wenzhi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wenzhi Li其他文献

Semiquantitative naked-eye detection of synthetic food colorants using highly-branched pipette tip as an all-in-one device
使用高度支化移液器吸头作为一体化设备对合成食品着色剂进行半定量肉眼检测
  • DOI:
    10.1016/j.aca.2022.339901
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Shuangshou Wang;Wenzhi Li;Zhihong Yuan;Qiwen Jin;Zongpeng Ding;Xiaomeng Liu;Mingfu Ye;Jing Gu;Tingxuan Yan;Hongmei Chen;Yang Chen
  • 通讯作者:
    Yang Chen
Fluctuation-induced tunneling dominated electrical transport in multi-layered single-walled carbon nanotube films
多层单壁碳纳米管薄膜中涨落诱导的隧道效应主导电传输
  • DOI:
    10.1016/j.tsf.2011.05.059
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Yanli Zhao;Wenzhi Li
  • 通讯作者:
    Wenzhi Li
Catalytic depolymerization of Kraft lignin to produce liquid fuels via Ni–Sn metal oxide catalysts
Ni-Sn金属氧化物催化剂催化解聚硫酸盐木质素生产液体燃料
  • DOI:
    10.1039/c9se01089k
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Baikai Zhang;Wenzhi Li;Xiaomeng Dou;Jindong Wang;Lele Jin;Ajibola T. Ogunbiyi;Xiaosen Li
  • 通讯作者:
    Xiaosen Li
Change of sheet resistance of high purity alumina ceramics implanted by Cu and Ti ions
Cu、Ti离子注入高纯氧化铝陶瓷的方块电阻变化
  • DOI:
    10.1016/j.apsusc.2005.01.141
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Dexing Li;Jizhong Zhang;Miao Yu;Jianchang Kang;Wenzhi Li
  • 通讯作者:
    Wenzhi Li
Quadratic performance analysis of switched affine time-varying systems
切换仿射时变系统的二次性能分析

Wenzhi Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wenzhi Li', 18)}}的其他基金

PFI-TT: Filled carbon nanotubes for the development of high-performance lithium-ion batteries
PFI-TT:用于开发高性能锂离子电池的填充碳纳米管
  • 批准号:
    2213923
  • 财政年份:
    2023
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Standard Grant
I-Corps: Advanced anode material for lithium-ion batteries based on filled carbon nanotubes
I-Corps:基于填充碳纳米管的先进锂离子电池负极材料
  • 批准号:
    2134375
  • 财政年份:
    2021
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Standard Grant
U.S.-China Planning Visit: Establishing Collaborations on Electronic and Optoelectronic Nanomaterial Research
美中计划访问:建立电子和光电纳米材料研究合作
  • 批准号:
    1043033
  • 财政年份:
    2011
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Standard Grant
CAREER: Synthesis and Electronic/Electrical Properties of Carbon Nanotube Junctions
职业:碳纳米管结的合成和电子/电气性能
  • 批准号:
    0548061
  • 财政年份:
    2006
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344722
  • 财政年份:
    2024
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344723
  • 财政年份:
    2024
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Standard Grant
Dual Series Gate Configuration, Materials Design, and Mechanistic Modeling for Drift-Stabilized, Highly Sensitive Organic Electrochemical Transistor Biosensors
用于漂移稳定、高灵敏度有机电化学晶体管生物传感器的双串联栅极配置、材料设计和机械建模
  • 批准号:
    2402407
  • 财政年份:
    2024
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Standard Grant
Atomic Imaging and Diagnosis of Electrochemical Materials - AIDEChem
电化学材料的原子成像和诊断 - AIDEChem
  • 批准号:
    EP/Z000483/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Research Grant
In-situ x-ray and electrochemical characterisation of energy materials
能源材料的原位 X 射线和电化学表征
  • 批准号:
    2889187
  • 财政年份:
    2023
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Studentship
Solid State Electrochemical Energy Storage Materials
固态电化学储能材料
  • 批准号:
    RGPIN-2020-05093
  • 财政年份:
    2022
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Discovery Grants Program - Individual
High yield production of phase-pure mono- or few-layer two-dimensional (2D) nanosheets of graphene like materials by electrochemical exfoliation
通过电化学剥离高产率生产纯相单层或少层二维(2D)石墨烯类材料纳米片
  • 批准号:
    571325-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Alliance Grants
Conference: CAS-Climate: Materials Chemistry in Electrochemical Energy Storage
会议:CAS-气候:电化学储能中的材料化学
  • 批准号:
    2232131
  • 财政年份:
    2022
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Standard Grant
New electrochemical materials breakthrough for energy applications
新型电化学材料在能源应用方面取得突破
  • 批准号:
    RGPIN-2019-07261
  • 财政年份:
    2022
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Discovery Grants Program - Individual
Development/characterization of materials for electrochemical energy storage
电化学储能材料的开发/表征
  • 批准号:
    RGPIN-2018-04488
  • 财政年份:
    2022
  • 资助金额:
    $ 59.82万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了