Response of Periodic Systems to External Electric and Magnetic Fields

周期性系统对外部电场和磁场的响应

基本信息

项目摘要

During the last roughly eight years the applicant together with a colleague in the US has been working on developing a method for studying the electronic and structural responses of quasi-linear chain compounds in external electrostatic fields where we have used a model Hamiltonian. The approach has been implemented into one and is being implemented into another ab initio program packages for polymers. This project is focusing on fundamental aspects of extending the approach to higher dimensions, to the treatment of magnetic fields, to delocalized basis functions (like plane waves), and to various fundamental aspects of the approach. As in our previous work, all theoretical approaches shall be analyzed through model calculations both for large, finite systems and for infinite, periodic systems. The use of models allows for studying in detail convergence behavior and for treating different types of systems. Both for electric and for magnetic fields, r is replaced by operators involving the derivatives with respect to k when studying infinite, periodic systems. Ultimately, this means that phase factors of the orbitals become important and that the band structures are non-unique for infinite periodic systems exposed to electromagnetic fields. Furthermore, it is not obvious how to identify excitation energies for such systems, partly because the approach is formulated for systems with completely filled bands. Also these aspects shall be studied through carefully designed model systems. Finally, the problems of presently used approximate density-functionals in describing the response of chain systems to electric fields shall be studied, too, by considering models
在过去的大约八年中,申请人与美国的同事一起一直致力于开发一种用于研究准线性链化合物在外部静电场中的电子和结构响应的方法,其中我们使用了模型哈密顿量。该方法已经实施到一个,并正在实施到另一个从头算程序包的聚合物。这个项目的重点是基本方面的扩展方法更高的维度,磁场的治疗,离域基函数(如平面波),以及各种基本方面的方法。与我们以前的工作一样,所有的理论方法都要通过模型计算来分析,既要对大的有限系统,也要对无限的周期系统。模型的使用允许详细研究收敛行为和治疗不同类型的系统。对于电场和磁场,在研究无限周期系统时,r被涉及k的导数的算子所取代。最终,这意味着轨道的相位因子变得重要,并且对于暴露于电磁场的无限周期系统,能带结构是非唯一的。此外,如何确定这种系统的激发能并不明显,部分原因是该方法是为具有完全填充带的系统制定的。此外,这些方面应通过精心设计的模型系统进行研究。最后,还将通过考虑模型来研究目前使用的近似密度泛函在描述链系统对电场的响应方面的问题

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surface effects on converse piezoelectricity of crystals.
晶体逆压电性的表面效应
Electronic orbital response of regular extended and infinite periodic systems to magnetic fields. I. Theoretical foundations for static case.
规则扩展和无限周期系统对磁场的电子轨道响应 I 静态情况的理论基础
  • DOI:
    10.1063/1.5001261
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Springborg;Michael;Molayem;Mohammad;Kirtman;Bernard
  • 通讯作者:
    Bernard
Response Properties of Periodic Materials Subjected to External Electric and Magnetic Fields
周期性材料在外部电场和磁场作用下的响应特性
  • DOI:
    10.1007/978-981-10-5651-2_5
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Kirtman;L. Maschio;M. Rérat;M. Springborg
  • 通讯作者:
    M. Springborg
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Springborg其他文献

Professor Dr. Michael Springborg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Springborg', 18)}}的其他基金

Construction of Helical Polymeric Co-sensatization Materials for Photovoltaics based on Inverse-Design
基于逆向设计的光伏用螺旋聚合物共敏材料的构建
  • 批准号:
    322830686
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Size dependent electronic, structural and catalytic properties of nanostructured supported metal oxide clusters
纳米结构负载金属氧化物簇的尺寸依赖性电子、结构和催化特性
  • 批准号:
    395619289
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theoretical studies of thermodynamic properties of clusters at low temperatures
团簇低温热力学性质的理论研究
  • 批准号:
    34425465
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Strukturelle und energetische Eigenschaften von bimetallischen Clustern
双金属团簇的结构和能量特性
  • 批准号:
    35387534
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development and implementation of theoretical methods for dealing with functions of the quantum-mechanical operator r in extended systems
处理扩展系统中量子力学算子 r 函数的理论方法的开发和实现
  • 批准号:
    15723851
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Theoretical studies of structural and energetic properties of metal clusters on surfaces
表面金属团簇结构和能量特性的理论研究
  • 批准号:
    5405632
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Theoretische Studien zu strukturellen und elektronischen Eigenschaften von konjugierten Polymeren in externen Feldern
外场共轭聚合物结构与电子性质的理论研究
  • 批准号:
    5379765
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theoretische Studien zu strukturellen, elektronischen und dynamischen Eigenschaften von Ein- und Zweischicht-Halbleiterkolloiden
单双层半导体胶体的结构、电子和动力学性质的理论研究
  • 批准号:
    5295028
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Ice, Ice, Babies! The role of periodic and catastrophic ice loss on species connectivity in polar systems.
冰,冰,宝贝们!
  • 批准号:
    2883145
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
  • 批准号:
    545643-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Local correlation approaches for ground and excited states of periodic systems
周期系统基态和激发态的局部相关方法
  • 批准号:
    RGPIN-2018-04187
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Piecewise expanding dynamical systems with neutral periodic points
具有中性周期点的分段展开动力系统
  • 批准号:
    574520-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Quantum Monte Carlo studies of periodic many-body systems
周期性多体系统的量子蒙特卡罗研究
  • 批准号:
    2731113
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Local correlation approaches for ground and excited states of periodic systems
周期系统基态和激发态的局部相关方法
  • 批准号:
    RGPIN-2018-04187
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
  • 批准号:
    545643-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
  • 批准号:
    545643-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Local correlation approaches for ground and excited states of periodic systems
周期系统基态和激发态的局部相关方法
  • 批准号:
    RGPIN-2018-04187
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
INTEGRABLE SYSTEMS OF PDE WITH QUASI-PERIODIC INITIAL DATA
具有准周期初始数据的偏微分方程可积系统
  • 批准号:
    RGPIN-2015-05140
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了