Colloidal Nanocrystal Routes to Inorganic Nanocomposite Thermoelectric Materials

胶体纳米晶体制备无机纳米复合热电材料的路线

基本信息

  • 批准号:
    1506829
  • 负责人:
  • 金额:
    $ 42.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical AbstractWith the support of the Solid State and Materials Chemistry program in the Division of Materials Research, this project synthesizes and characterizes advanced nanocomposite thermoelectric materials. Thermoelectric materials directly convert temperature differences into voltage differences and vice versa. This phenomenon enables the creation of solid-state thermoelectric power generators and coolers that can play a promising role in addressing the energy landscape and climate change. One of the most promising applications of thermoelectric devices is the conversion of waste heat (e.g. automotive exhaust) into electricity. Thermoelectric coolers are also promising because these devices do not use refrigerants, which are generally potent greenhouse gases. As a part of this activity, the principal investigator is creating a thermoelectric lab module for an undergraduate course on internal combustion engines. This lab integrates thermoelectric devices into an engine's exhaust system, and thereby enables the study of waste heat conversion into electricity. The engine is also equipped with a dynamometer that characterizes its mechanical power. Hence students are able to measure the electric power produced by the thermoelectric devices as they relate to the primary engine variables: speed and torque. Technical AbstractThe goal of this project is to advance the thermoelectric materials field by combining three separate mechanisms to improve performance in nanocomposite materials. First, the microstructure of these composites consists of nanoparticles embedded in a matrix. This morphology promotes strong phonon scattering and favorable reductions in thermal conductivity. Second, quantum-confined nanocrystals are being used for the nanoparticle inclusions. This confinement causes sharp peaks in the electronic density of states, which leads to large thermoelectric power factors. Lastly, band convergence is being used to create a large effective band degeneracy, which further promotes large thermoelectric power factors. Colloidal nanocrystals and metal-chalcogenide cluster precursors are being combined as modular building blocks to create the nanocomposites. The local atomic and electronic structures of the nanocomposites are being characterized using an aberration-corrected scanning transmission electron microscope equipped with a high resolution electron energy loss spectrometer. A complete suite of thermoelectric property measurements (i.e. Seebeck coefficient, electrical conductivity, and thermal conductivity) is being performed on the nanocomposites over a broad range of temperatures. Collectively, this project's combination of novel nanocomposite formation, atomistic materials characterization, and thermoelectric measurement suite enables the targeted discovery of thermoelectric design rules for improved performance.
在材料研究部固体和材料化学项目的支持下,本项目合成和表征了先进的纳米复合热电材料。热电材料直接将温差转换为电压差,反之亦然。这种现象使得固态热电发电机和冷却器的创造成为可能,在解决能源格局和气候变化方面发挥着有希望的作用。热电器件最有前途的应用之一是将废热(例如汽车尾气)转化为电能。热电冷却器也很有前途,因为这些设备不使用制冷剂,而制冷剂通常是强效温室气体。作为这项活动的一部分,首席研究员正在为内燃机本科课程创建热电实验室模块。该实验室将热电装置集成到发动机的排气系统中,从而能够研究废热转化为电能。发动机还配备了一个测功仪,用于表征其机械功率。因此,学生能够测量热电装置产生的电功率,因为它们与发动机的主要变量有关:速度和扭矩。 本项目的目标是通过结合三种不同的机制来提高纳米复合材料的性能,从而推进热电材料领域。首先,这些复合材料的微观结构由嵌入基体中的纳米颗粒组成。这种形态促进强声子散射和有利的热导率降低。第二,量子限制纳米晶体被用于纳米颗粒夹杂物。这种限制导致电子态密度的尖峰,这导致大的热电功率因子。最后,带收敛被用来创建一个大的有效带简并,这进一步促进大的热电功率因数。胶体纳米晶体和金属硫族化物簇前体被组合为模块构建块,以创建纳米复合材料。纳米复合材料的局部原子和电子结构的特征在于使用像差校正的扫描透射电子显微镜配备了高分辨率电子能量损失光谱仪。一套完整的热电性能测量(即塞贝克系数,电导率和热导率)正在进行的纳米复合材料在很宽的温度范围内。总的来说,该项目结合了新型纳米复合材料的形成、原子材料的表征和热电测量套件,能够有针对性地发现热电设计规则,以提高性能。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In Situ Alloying of Thermally Conductive Polymer Composites by Combining Liquid and Solid Metal Microadditives
  • DOI:
    10.1021/acsami.7b15814
  • 发表时间:
    2018-01-17
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Ralphs, Matthew I.;Kemme, Nicholas;Rykaczewski, Konrad
  • 通讯作者:
    Rykaczewski, Konrad
Tin(IV) Methylselenolate as a Low Temperature SnSe Precursor and Conductive “Glue” Between Colloidal Nanocrystals
甲基硒酸锡 (IV) 作为低温 SnSe 前体和胶体纳米晶体之间的导电“胶水”
  • DOI:
    10.1002/cnma.201900650
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Vartak, Prathamesh B.;Wang, Robert Y.
  • 通讯作者:
    Wang, Robert Y.
Solution and Solid-State Characterization of PbSe Precursors
PbSe 前驱体的溶液和固态表征
  • DOI:
    10.1021/acsomega.9b03715
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Vartak, Prathamesh B.;Wang, Zhongyong;Groy, Thomas L.;Trovitch, Ryan J.;Wang, Robert Y.
  • 通讯作者:
    Wang, Robert Y.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Wang其他文献

Which causes more ergonomic stress: Laparoscopic or open surgery?
腹腔镜手术和开放手术哪个会造成更大的人体工程学压力?
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robert Wang;Zhe Liang;Ahmed M. Zihni;Shuddhadeb Ray;M. Awad
  • 通讯作者:
    M. Awad
Genomic Evolution of Oligometastatic Clear Cell Renal Cell Carcinoma Presenting Two Decades Following Radical Nephrectomy.
根治性肾切除术后二十年出现的寡转移性透明细胞肾细胞癌的基因组进化。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Robert Wang;Nicole Uzzo;R. Chelluri;N. Mackrides;Hormoz Ehya;J. Pei;Donald A. Baldwin;Mariusz A Wasik;Shuanzeng Wei;Robert G Uzzo
  • 通讯作者:
    Robert G Uzzo
Improved Digital Beam-forming Approach with Scaling Function for Range Multi-channel SAR System
距离多通道SAR系统具有缩放功能的改进数字波束形成方法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Wei Wang;Robert Wang;Yunkai Deng;Wei Xu;Lili Hou
  • 通讯作者:
    Lili Hou
Comparison of Target Detection Results in a Forest Whether the Branches are Covered with Snow Based on P-Band Airborne SAR Quad-Pol Images
基于P波段机载SAR四极化图像的森林树枝积雪目标检测结果比较
Improved offset tracking for predisaster deformation monitoring of the 2018 Jinsha River landslide (Tibet, China)
改进偏移跟踪,用于 2018 年金沙江滑坡灾前变形监测(中国西藏)
  • DOI:
    10.1016/j.rse.2020.111899
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    13.5
  • 作者:
    Hongying Jia;Yingjie Wang;Daqing Ge;Yunkai Deng;Robert Wang
  • 通讯作者:
    Robert Wang

Robert Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Wang', 18)}}的其他基金

CAREER: Phononic Properties of Colloidal Nanocrystal Superlattices
职业:胶体纳米晶体超晶格的声子特性
  • 批准号:
    1654337
  • 财政年份:
    2017
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
High Energy Density, High Thermal Conductivity Latent Heat Storage using Inorganic Nanocomposites
使用无机纳米复合材料的高能量密度、高导热性潜热存储
  • 批准号:
    1236656
  • 财政年份:
    2012
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
BRIGE: Thermal Transport in Single-Domain Three-Dimensional Colloidal Nanocrystal Superlattices
BRIGE:单域三维胶体纳米晶超晶格中的热传输
  • 批准号:
    1227979
  • 财政年份:
    2012
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
SBIR Phase I: Direct 3D Manipulation for Computer Aided Design
SBIR 第一阶段:计算机辅助设计的直接 3D 操作
  • 批准号:
    1215109
  • 财政年份:
    2012
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Improved Methods For the Rapid Detection of Microbial Contaminants
快速检测微生物污染物的改进方法
  • 批准号:
    7719701
  • 财政年份:
    1977
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
  • 批准号:
    2339866
  • 财政年份:
    2024
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
Ultrathin Gold Nanocrystal Conductors for Wearable Epidermal Biofuel Cells
用于可穿戴表皮生物燃料电池的超薄金纳米晶体导体
  • 批准号:
    DP230101377
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Discovery Projects
Nanocrystal Electron Diffraction Facility
纳米晶体电子衍射装置
  • 批准号:
    LE230100145
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
The Determinants of Crystalline Phase in Bottom-Up Nanocrystal Synthesis
自下而上纳米晶合成中晶相的决定因素
  • 批准号:
    2305161
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
TOSPEL Transient operando spectroscopy of perovskite nanocrystal LEDs
钙钛矿纳米晶体 LED 的 TOSPEL 瞬态操作光谱
  • 批准号:
    EP/Y029429/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Fellowship
LEAPS-MPS: Achieving Single Lead Halide Perovskite Nanocrystal Growth on a Soft Liquid/Liquid Interface
LEAPS-MPS:在软液/液界面上实现单卤化铅钙钛矿纳米晶体生长
  • 批准号:
    2316919
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
CCI Phase I: NSF Center for Single-Entity Nanochemistry and Nanocrystal Design
CCI 第一阶段:NSF 单一实体纳米化学和纳米晶体设计中心
  • 批准号:
    2221062
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
CAS: Understanding Catalyst Roles in Aluminum Nanocrystal Synthesis
CAS:了解铝纳米晶体合成中的催化剂作用
  • 批准号:
    2154998
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
Rare-earth-doped and semiconductor nanocrystal lasers for photonic applications
用于光子应用的稀土掺杂半导体纳米晶体激光器
  • 批准号:
    2744966
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Studentship
Nanocrystal Quantum Dot Biomimetics of SARS-CoV-2 to Interrogate Neutrophil-Mediated Neuroinflammation at the Blood-Brain Barrier
SARS-CoV-2 的纳米晶量子点仿生学研究中性粒细胞介导的血脑屏障神经炎症
  • 批准号:
    10510611
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了