Control and Thermodynamics of Nanoscale Systems
纳米级系统的控制和热力学
基本信息
- 批准号:1506969
- 负责人:
- 金额:$ 49.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYTechnological progress has enabled scientists and engineers to build and manipulate physical systems at the level of individual atoms and molecules. At these small scales the laws of Nature are often strange and counter-intuitive. This award supports theoretical research and education aimed to elucidate how the dynamics of such systems can be controlled, and to deepen understanding of how the laws of quantum physics and thermodynamics combine to determine the behavior of nanoscale systems.Quantum physics governs the behavior of atoms and molecules, while thermodynamics was developed to describe how systems exchange energy and matter with one another. Combining the two fields, particularly for systems that are far away from the steady state of thermal equilibrium is a challenging area of research. The activities funded by this award will address three aspects of this problem. One project involves developing theoretical methods for controlling a quantum mechanical system so that it reaches a desired final state in a fixed amount of time. This will involve theoretical tools borrowed from quantum physics, classical mechanics and thermodynamics. The second project is aimed to explore how thermodynamic concepts such as heat and work apply to systems that are governed by the laws of quantum physics. In the third project, the PI will investigate the role played by the interactions between a small system and its surroundings, in the thermodynamic behavior of the system.These activities will involve students as well as postdoctoral researchers, providing training in theoretical methods at the intersection of quantum physics and thermodynamics.TECHNICAL SUMMARYThis award supports fundamental theoretical research and education related to the coherent quantum control and the thermodynamics of systems at atomic and molecular length scales. The first project addresses the new and exciting field of shortcuts to adiabaticity, where the aim is to guide a system to evolve as if it were being manipulated very slowly, even when the manipulation occurs rapidly. The PI will develop strategies that apply the tools of classical and statistical physics to design such quantum shortcuts. The second project undertakes a careful analysis of the relationship between classical and quantal definitions of work, with an emphasis on using semiclassical methods to identify the impact of quantum interference between classical trajectories. The third project involves investigating how the first and second laws of thermodynamics "scale down" to describe the behavior of systems that are strongly coupled to their thermal surroundings. The PI will explore microscopically precise definitions of quantities such as internal energy, entropy and volume that preserve the structure of the first and second laws, without needing to introduce corrections to account for strong system-environment interaction. The proposed research will:(1) Develop a broadly applicable methodology for using classical mechanics to design protocols for the manipulation of coherent quantum systems. This methodology will be useful in experimental settings where many of the current methods, based on scale-invariant driving, do not apply.(2) Provide a deeper understanding of the emergence of classical thermodynamics from quantum thermodynamics, for isolated systems driven by the variation of external parameters. In particular, it will clarify the role of quantum interference on the second law of thermodynamics and on nonequilibrium fluctuation relations.(3) Establish a consistent, microscopic thermodynamic framework for describing the interchange of energy between a system and its surroundings, when the two are sufficiently strongly coupled that the interaction energy itself cannot be ignored. This framework will be useful in describing the thermodynamics of biomolecules, which interact strongly with their aqueous surroundings. This award supports graduate student and postdoctoral level training in the methods of theoretical and computational statistical physics.
技术进步使科学家和工程师能够在单个原子和分子的水平上建立和操纵物理系统。 在这些小尺度上,自然规律往往是奇怪和违反直觉的。 该奖项支持理论研究和教育,旨在阐明如何控制这种系统的动力学,并加深对量子物理学和热力学定律如何结合联合收割机来确定纳米级系统行为的理解。量子物理学控制原子和分子的行为,而热力学则描述系统如何相互交换能量和物质。 将这两个领域结合起来,特别是对于远离热平衡稳态的系统,是一个具有挑战性的研究领域。 该奖项资助的活动将解决这一问题的三个方面。 其中一个项目涉及开发控制量子力学系统的理论方法,使其在固定的时间内达到所需的最终状态。 这将涉及从量子物理学、经典力学和热力学中借用的理论工具。 第二个项目旨在探索热和功等热力学概念如何应用于受量子物理定律支配的系统。 在第三个项目中,PI将研究小系统与其周围环境之间的相互作用在系统热力学行为中所起的作用。这些活动将涉及学生和博士后研究人员,提供量子物理学和热力学交叉点的理论方法培训。技术概述该奖项支持与相干量子控制相关的基础理论研究和教育,在原子和分子尺度上的系统热力学。第一个项目解决了新的和令人兴奋的领域的捷径绝热性,其目的是引导一个系统的演变,就好像它被操纵非常缓慢,即使当操纵发生迅速。PI将开发应用经典和统计物理学工具来设计这种量子捷径的策略。第二个项目对经典和量子功定义之间的关系进行了仔细分析,重点是使用半经典方法来确定经典轨迹之间量子干涉的影响。第三个项目涉及研究热力学第一和第二定律如何“按比例缩小”来描述与其热环境强烈耦合的系统的行为。PI将探索微观上精确的定义,如内能,熵和体积,保持第一和第二定律的结构,而不需要引入修正来解释强烈的系统-环境相互作用。本研究将:(1)发展一套广泛适用的方法,利用经典力学设计操控相干量子系统的协议。这种方法将是有用的,在实验环境中,许多目前的方法,基于尺度不变的驱动,不适用。(2)提供从量子热力学的经典热力学的出现更深入的理解,对于由外部参数的变化驱动的孤立系统。特别是,它将阐明量子干涉对热力学第二定律和非平衡涨落关系的作用。(3)建立一个一致的,微观热力学框架,用于描述系统与其周围环境之间的能量交换,当两者足够强耦合时,相互作用能本身不能被忽略。这个框架将是有用的,在描述生物分子的热力学,强烈相互作用与它们的水环境。该奖项支持理论和计算统计物理方法的研究生和博士后水平培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Jarzynski其他文献
Recovery of Equilibrium Free Energy from Non-Equilibrium Thermodynamics with Mechanosensitive Ion Channels in <em>E. coli</em>
- DOI:
10.1016/j.bpj.2017.11.656 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Ugur Cetiner;Oren Raz;Sergei Sukharev;Christopher Jarzynski - 通讯作者:
Christopher Jarzynski
Theory of Quantum Super Impulses
- DOI:
10.1103/prxquantum.5.010322 - 发表时间:
2023-12 - 期刊:
- 影响因子:9.7
- 作者:
Christopher Jarzynski - 通讯作者:
Christopher Jarzynski
Verification of the quantum nonequilibrium work relation in the presence of decoherence,
存在退相干时量子非平衡功关系的验证
- DOI:
10.1088/1367-2630/aa9cd6 - 发表时间:
2018 - 期刊:
- 影响因子:3.3
- 作者:
Andrew Smith;Yao Lu;Shuoming An;Xiang Zhang;Jing-Ning Zhang;Zongping Gong;H. T. Quan;Christopher Jarzynski;Kihwan Kim - 通讯作者:
Kihwan Kim
A New Model for Single-Molecule Tracking Analysis 1 of Transcription Factor Dynamics
转录因子动力学单分子追踪分析1的新模型
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
David A. Garcia;Gregory Fettweis;Diego M. Presman;Ville Paakinaho;Christopher Jarzynski;A. Upadhyaya;Gordon L. Hager - 通讯作者:
Gordon L. Hager
Christopher Jarzynski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Jarzynski', 18)}}的其他基金
Dynamics and Thermodynamics of Nanoscale Systems
纳米系统的动力学和热力学
- 批准号:
2127900 - 财政年份:2022
- 资助金额:
$ 49.6万 - 项目类别:
Continuing Grant
Nonequilibrium Statistical Mechanics of Nanoscale Systems
纳米系统的非平衡统计力学
- 批准号:
1206971 - 财政年份:2012
- 资助金额:
$ 49.6万 - 项目类别:
Continuing Grant
Collaborative Research: Designing non-autonomous molecular machines
合作研究:设计非自主分子机器
- 批准号:
0925365 - 财政年份:2009
- 资助金额:
$ 49.6万 - 项目类别:
Standard Grant
Biomolecular Computational Thermodynamics: Strategies for Improved Efficiency
生物分子计算热力学:提高效率的策略
- 批准号:
0841557 - 财政年份:2009
- 资助金额:
$ 49.6万 - 项目类别:
Continuing Grant
Theoretical Studies in Far-From-Equilibrium Statistical Mechanics
远离平衡统计力学的理论研究
- 批准号:
0906601 - 财政年份:2009
- 资助金额:
$ 49.6万 - 项目类别:
Continuing Grant
相似海外基金
Collective Quantum Thermodynamics: Quantum vs Classical
集体量子热力学:量子与经典
- 批准号:
MR/Y003845/1 - 财政年份:2024
- 资助金额:
$ 49.6万 - 项目类别:
Fellowship
Control and thermodynamics of quantum systems
量子系统的控制和热力学
- 批准号:
2892547 - 财政年份:2023
- 资助金额:
$ 49.6万 - 项目类别:
Studentship
Thermodynamics of Growing Active and Living Matter
活性物质和生命物质生长的热力学
- 批准号:
EP/W027194/1 - 财政年份:2023
- 资助金额:
$ 49.6万 - 项目类别:
Fellowship
Conference: 32nd Annual Midwest Thermodynamics and Statistical Mechanics (MTSM) Conference
会议:第 32 届年度中西部热力学和统计力学 (MTSM) 会议
- 批准号:
2313246 - 财政年份:2023
- 资助金额:
$ 49.6万 - 项目类别:
Standard Grant
Theoretical Spectroscopy and Thermodynamics of Correlated Electron Materials
相关电子材料的理论光谱学和热力学
- 批准号:
2233892 - 财政年份:2023
- 资助金额:
$ 49.6万 - 项目类别:
Continuing Grant
Thermodynamics and Redox Reactivity of Birnessite
水钠锰矿的热力学和氧化还原反应性
- 批准号:
2304711 - 财政年份:2023
- 资助金额:
$ 49.6万 - 项目类别:
Standard Grant
Thermodynamics of Multi-Domain Power Networks: Principles for Optimization and Control with Applications to Turboelectric Systems
多域电力网络的热力学:优化和控制原理及其在涡轮发电系统中的应用
- 批准号:
2221726 - 财政年份:2023
- 资助金额:
$ 49.6万 - 项目类别:
Standard Grant
Collaborative Research: Energy Conversion Beyond the First Law of Thermodynamics in Non-Equilibrium Plasmas
合作研究:非平衡等离子体中超越热力学第一定律的能量转换
- 批准号:
2308669 - 财政年份:2023
- 资助金额:
$ 49.6万 - 项目类别:
Standard Grant
Numerical and experimental investigation of the impact of preferential flow and nonequilibrium thermodynamics on meltwater transport through snow
优先流和非平衡热力学对融水通过雪输送影响的数值和实验研究
- 批准号:
2243631 - 财政年份:2023
- 资助金额:
$ 49.6万 - 项目类别:
Standard Grant
Coarse graining methods in nonequilibrium thermodynamics: Systematization and exploration using information geometry
非平衡热力学中的粗粒化方法:利用信息几何的系统化和探索
- 批准号:
23KJ0732 - 财政年份:2023
- 资助金额:
$ 49.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows