CDS&E: Collaborative Research: A Bayesian inference/prediction/control framework for optimal management of CO2 sequestration
CDS
基本信息
- 批准号:1507488
- 负责人:
- 金额:$ 13.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2018-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1508713 (Ghattas) / 1507488 (Willcox)/ 1507009 (Stadler)The focus of the proposed work is on integrating research developments in scientific computing, statistical analysis, and numerical analysis to provide a common platform for managing CO2 storage. Results from this work will be important to energy production in the US, an area of National interest. Geological carbon storage faces two main challenges: the risk of inducing seismicity, and leakage of the injected CO2 into potable aquifers. The characterization of the injection site and continued monitoring of the CO2 migration as well as stress changes in the region of elevated pressure are therefore particularly important to maximize the amount of CO2 that can be stored, while ensuring the long term safety of storage sites. To address these challenges, the overall goal of the proposed research is to (1) integrate well pressure and, where available, surface deformation data into coupled poromechanics models by solving the inverse problem for unknown subsurface properties; (2) to quantify the uncertainty in the inversion for the subsurface properties, and (3) to use the resulting inferred poromechanics models together with their uncertainty to design optimal control strategies for well injection that optimize the amount of stored CO2 while controlling the risk of seismicity. It is essential that this poromechanics based inference/prediction/control framework takes into account uncertainties at every stage, since both the observational data and the models are uncertain. However, solving stochastic inverse/optimal control problems for large-scale PDE models, such as those of poromechanics, is intractable using current methods, which suffer from the "curse of dimensionality." Thus, it is proposed to overcome these barriers by developing scalable methods and algorithms that exploit the problem structure to reduce effective dimensionality. While the end application of CO2 storage is quite important in itself, the framework to be developed can be applicable to a broader set of science and engineering problems for which large-scale uncertain models must be inferred from large-scale uncertain data, and then used to solve optimal decision-making problems under uncertainty.
1508713(Ghattas)/ 1507488(威尔考克斯)/ 1507009(Stadler)拟议工作的重点是整合科学计算,统计分析和数值分析的研究发展,为管理CO2储存提供一个共同的平台。 这项工作的结果将对美国的能源生产至关重要,这是一个国家利益领域。地质碳储存面临两个主要挑战:诱发地震活动的风险,以及注入的二氧化碳泄漏到饮用水含水层。因此,注入地点的表征和CO2迁移的持续监测以及高压区域的应力变化对于最大化可储存的CO2量,同时确保储存地点的长期安全性特别重要。为了应对这些挑战,所提出的研究的总体目标是(1)通过求解未知地下性质的反问题,将井压和可用的地表变形数据集成到耦合孔隙力学模型中;(2)量化地下性质反演中的不确定性,以及(3)使用所得到的推断孔隙力学模型及其不确定性来设计用于井注入的最优控制策略,该最优控制策略在控制地震活动性的风险的同时优化储存的CO2的量。由于观测数据和模型都是不确定的,因此这种基于孔隙力学的推断/预测/控制框架必须考虑每个阶段的不确定性。然而,解决大规模PDE模型的随机逆/最优控制问题,如孔隙力学,是棘手的使用现有的方法,这遭受的“维数灾难”。“因此,建议通过开发可扩展的方法和算法来克服这些障碍,这些方法和算法利用问题结构来降低有效维度。虽然CO2封存的最终应用本身非常重要,但要开发的框架可以适用于更广泛的科学和工程问题,对于这些问题,必须从大规模不确定数据中推断出大规模不确定模型,然后用于解决不确定性下的最优决策问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen Willcox其他文献
Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine
用于精准医疗的数字孪生体的验证、确认和不确定性量化的调查与展望
- DOI:
10.1038/s41746-025-01447-y - 发表时间:
2025-01-17 - 期刊:
- 影响因子:15.100
- 作者:
Kaan Sel;Andrea Hawkins-Daarud;Anirban Chaudhuri;Deen Osman;Ahmad Bahai;David Paydarfar;Karen Willcox;Caroline Chung;Roozbeh Jafari - 通讯作者:
Roozbeh Jafari
Real-time aerodynamic load estimation for hypersonics via strain-based inverse maps
通过基于应变的逆映射对高超音速进行实时气动载荷估计
- DOI:
10.2514/6.2024-1228 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Julie Pham;Omar Ghattas;Karen Willcox - 通讯作者:
Karen Willcox
Digital twins in mechanical and aerospace engineering
机械和航空航天工程中的数字孪生
- DOI:
10.1038/s43588-024-00613-8 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alberto Ferrari;Karen Willcox - 通讯作者:
Karen Willcox
Optimal $$L_2$$ -norm empirical importance weights for the change of probability measure
- DOI:
10.1007/s11222-016-9644-3 - 发表时间:
2016-03-14 - 期刊:
- 影响因子:1.600
- 作者:
Sergio Amaral;Douglas Allaire;Karen Willcox - 通讯作者:
Karen Willcox
Multifidelity uncertainty quantification for ice sheet simulations
- DOI:
10.1007/s10596-024-10329-3 - 发表时间:
2025-01-09 - 期刊:
- 影响因子:2.000
- 作者:
Nicole Aretz;Max Gunzburger;Mathieu Morlighem;Karen Willcox - 通讯作者:
Karen Willcox
Karen Willcox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen Willcox', 18)}}的其他基金
Conference: NSF Workshop on Crosscutting Research Needs for Digital Twins
会议:美国国家科学基金会数字孪生横切研究需求研讨会
- 批准号:
2335883 - 财政年份:2023
- 资助金额:
$ 13.96万 - 项目类别:
Standard Grant
Collaborative Research: DDDAS-TMRP: MIPS: A Real-Time Measurement-Inversion-Prediction-Steering Framework for Hazardous Events
合作研究:DDDAS-TMRP:MIPS:危险事件实时测量-反演-预测-引导框架
- 批准号:
0540186 - 财政年份:2005
- 资助金额:
$ 13.96万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 13.96万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 13.96万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 13.96万 - 项目类别:
Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 13.96万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 13.96万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 13.96万 - 项目类别:
Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 13.96万 - 项目类别:
Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 13.96万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 13.96万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 13.96万 - 项目类别:
Standard Grant