Recent Developments in Positive Characteristic Methods in Commutative Algebra: Frobenius Operators and Cartier Algebras

交换代数正特征方法的最新进展:Frobenius 算子和 Cartier 代数

基本信息

项目摘要

This award supports participation in the conference Recent Developments in Positive Characteristic Methods in Commutative Algebra, held during March 13-15, 2015, at Georgia State University, Atlanta, Georgia. The motivation behind the conference is to bring together researchers, including postdoctoral researchers and graduate students, in commutative algebra and related areas, in order to exchange ideas and discuss recent developments in positive characteristic methods. Top researchers in the field as well as postdocs and graduate students will be invited to speak at the conference. To make the conference accessible to all participants, introductory talks are scheduled. The conference will provide a platform for the participants to start exploring research aspects related to the highlighted topics, and it is anticipated that they will contribute research progress in these areas within a few years. More information can be found on the conference web site: http://www2.gsu.edu/~matfxe/gsu-usc/foca.htmlThe conference will focus on recent developments in positive characteristic methods. Research on positive characteristic methods has seen tremendous developments in recent years via using concepts related to the Frobenius homomorphisms. This includes the tight closure theory in characteristic p, singularities derived via tight closure theory, as well as the corresponding singularities in characteristic zero (via reduction to characteristic p) in algebraic geometry. The highlights of the conference, Frobenius operators and Cartier algebras, also involve the Frobenius homomorphisms in very fundamental ways. Both of them have intricate connections with the tight closure theory, birational geometry, F-modules, F-stability, test ideals, jumping numbers, anti-canonical covers, etcetera. Very recent research also includes the invariant "Frobenius complexity" being defined in order to measure whether a ring Frobenius operators is finitely generated. This conference will provide an opportunity for the participants to get exposed to the topics, exchange ideas, forge collaborations, and contribute to these research areas.
该奖项支持参加 2015 年 3 月 13 日至 15 日在佐治亚州亚特兰大市佐治亚州立大学举行的交换代数正特征方法的最新发展会议。会议的目的是将交换代数及相关领域的研究人员(包括博士后研究人员和研究生)聚集在一起,交流思想并讨论正特征方法的最新发展。该领域的顶尖研究人员以及博士后和研究生将被邀请在会议上发言。为了使所有与会者都能参加会议,安排了介绍性演讲。会议将为与会者提供一个开始探索与重点主题相关的研究方面的平台,预计他们将在几年内为这些领域的研究进展做出贡献。 更多信息可以在会议网站上找到:http://www2.gsu.edu/~matfxe/gsu-usc/foca.html 会议将重点关注积极特征方法的最新发展。近年来,通过使用与 Frobenius 同态相关的概念,正特征方法的研究取得了巨大的发展。这包括特征 p 中的紧闭理论、通过紧闭理论导出的奇点以及代数几何中特征零(通过简化为特征 p)中的相应奇点。会议的亮点是弗罗贝尼乌斯算子和卡地亚代数,也涉及非常基本的弗罗贝尼乌斯同态。它们都与紧闭包理论、双有理几何、F 模、F 稳定性、测试理想、跳跃数、反规范覆盖等有着复杂的联系。最近的研究还包括定义不变的“弗罗贝尼乌斯复杂度”,以衡量环弗罗贝尼乌斯算子是否是有限生成的。这次会议将为与会者提供一个接触主题、交流想法、建立合作并为这些研究领域做出贡献的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongwei Yao其他文献

Modules with Finite F‐Representation Type
具有有限 F 表示类型的模块
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongwei Yao
  • 通讯作者:
    Yongwei Yao
Observations on the F-signature of local rings of characteristic p
特征 p 局部环的 F 签名观测
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongwei Yao
  • 通讯作者:
    Yongwei Yao
Global Frobenius Betti numbers and F-splitting ratio
全局 Frobenius Betti 数和 F 分流比
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alessandro De Stefani;Thomas Polstra;Yongwei Yao
  • 通讯作者:
    Yongwei Yao
Unmixed local rings with minimal Hilbert-Kunz multiplicity are regular
具有最小 Hilbert-Kunz 重数的非混合局部环是规则的
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Huneke;Yongwei Yao
  • 通讯作者:
    Yongwei Yao
Generalizing Serre's Splitting Theorem and Bass's Cancellation Theorem via free-basic elements
通过自由基本元素推广塞尔分裂定理和巴斯取消定理
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alessandro De Stefani;Thomas Polstra;Yongwei Yao
  • 通讯作者:
    Yongwei Yao

Yongwei Yao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongwei Yao', 18)}}的其他基金

Tight closure and primary decomposition in Commutative Algebra
交换代数中的紧闭闭与初等分解
  • 批准号:
    0700554
  • 财政年份:
    2007
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Standard Grant

相似海外基金

Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
  • 批准号:
    10064693
  • 财政年份:
    2024
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
  • 批准号:
    23H01264
  • 财政年份:
    2023
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
  • 批准号:
    23H01944
  • 财政年份:
    2023
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
  • 批准号:
    23K03064
  • 财政年份:
    2023
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
  • 批准号:
    23K12950
  • 财政年份:
    2023
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New developments in Javanese Homo erectus research using synchrotron, proteomics and high precision dating
利用同步加速器、蛋白质组学和高精度测年技术进行爪哇直立人研究的新进展
  • 批准号:
    23K17404
  • 财政年份:
    2023
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Developments of game theory played on networks with incomplete information and their applications to public policies
不完全信息网络博弈论的发展及其在公共政策中的应用
  • 批准号:
    23K01343
  • 财政年份:
    2023
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
  • 批准号:
    23K03266
  • 财政年份:
    2023
  • 资助金额:
    $ 2.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了