Recent Developments in Positive Characteristic Methods in Commutative Algebra: Frobenius Operators and Cartier Algebras
交换代数正特征方法的最新进展:Frobenius 算子和 Cartier 代数
基本信息
- 批准号:1507908
- 负责人:
- 金额:$ 2.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-15 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in the conference Recent Developments in Positive Characteristic Methods in Commutative Algebra, held during March 13-15, 2015, at Georgia State University, Atlanta, Georgia. The motivation behind the conference is to bring together researchers, including postdoctoral researchers and graduate students, in commutative algebra and related areas, in order to exchange ideas and discuss recent developments in positive characteristic methods. Top researchers in the field as well as postdocs and graduate students will be invited to speak at the conference. To make the conference accessible to all participants, introductory talks are scheduled. The conference will provide a platform for the participants to start exploring research aspects related to the highlighted topics, and it is anticipated that they will contribute research progress in these areas within a few years. More information can be found on the conference web site: http://www2.gsu.edu/~matfxe/gsu-usc/foca.htmlThe conference will focus on recent developments in positive characteristic methods. Research on positive characteristic methods has seen tremendous developments in recent years via using concepts related to the Frobenius homomorphisms. This includes the tight closure theory in characteristic p, singularities derived via tight closure theory, as well as the corresponding singularities in characteristic zero (via reduction to characteristic p) in algebraic geometry. The highlights of the conference, Frobenius operators and Cartier algebras, also involve the Frobenius homomorphisms in very fundamental ways. Both of them have intricate connections with the tight closure theory, birational geometry, F-modules, F-stability, test ideals, jumping numbers, anti-canonical covers, etcetera. Very recent research also includes the invariant "Frobenius complexity" being defined in order to measure whether a ring Frobenius operators is finitely generated. This conference will provide an opportunity for the participants to get exposed to the topics, exchange ideas, forge collaborations, and contribute to these research areas.
该奖项支持在交换代数中的正特征方法的最新发展会议的参与,在2015年3月13日至15日期间举行,在格鲁吉亚州立大学,亚特兰大,格鲁吉亚.会议背后的动机是汇集研究人员,包括博士后研究人员和研究生,在交换代数和相关领域,以交流思想和讨论积极的特征方法的最新发展。该领域的顶尖研究人员以及博士后和研究生将被邀请在会议上发言。为了使所有与会者都能参加会议,安排了介绍性发言。会议将为与会者提供一个平台,开始探索与突出主题相关的研究方面,预计他们将在几年内为这些领域的研究进展做出贡献。 更多的信息可以在会议网站上找到:http://www2.gsu.edu/~matfxe/gsu-usc/foca.htmlThe会议将集中在积极的特征方法的最新发展。近年来,正特征方法的研究由于引入了Frobenius同态的相关概念而得到了很大的发展。这包括特征p中的紧闭理论,通过紧闭理论导出的奇点,以及代数几何中特征零中的相应奇点(通过还原为特征p)。会议的亮点,弗罗贝纽斯算子和卡地亚代数,也涉及弗罗贝纽斯同态在非常基本的方式。它们都与紧闭包理论、双有理几何、F-模、F-稳定性、测试理想、跳跃数、反正则覆盖等有着千丝万缕的联系。最近的研究还包括定义不变的“Frobenius复杂度”,以衡量一个环Frobenius算子是否是非线性生成的。本次会议将为与会者提供一个机会,让他们接触到的主题,交流思想,建立合作,并为这些研究领域作出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongwei Yao其他文献
Global Frobenius Betti numbers and F-splitting ratio
全局 Frobenius Betti 数和 F 分流比
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Alessandro De Stefani;Thomas Polstra;Yongwei Yao - 通讯作者:
Yongwei Yao
Observations on the F-signature of local rings of characteristic p
特征 p 局部环的 F 签名观测
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Yongwei Yao - 通讯作者:
Yongwei Yao
Modules with Finite F‐Representation Type
具有有限 F 表示类型的模块
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Yongwei Yao - 通讯作者:
Yongwei Yao
Unmixed local rings with minimal Hilbert-Kunz multiplicity are regular
具有最小 Hilbert-Kunz 重数的非混合局部环是规则的
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
C. Huneke;Yongwei Yao - 通讯作者:
Yongwei Yao
Generalizing Serre's Splitting Theorem and Bass's Cancellation Theorem via free-basic elements
通过自由基本元素推广塞尔分裂定理和巴斯取消定理
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Alessandro De Stefani;Thomas Polstra;Yongwei Yao - 通讯作者:
Yongwei Yao
Yongwei Yao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongwei Yao', 18)}}的其他基金
Tight closure and primary decomposition in Commutative Algebra
交换代数中的紧闭闭与初等分解
- 批准号:
0700554 - 财政年份:2007
- 资助金额:
$ 2.45万 - 项目类别:
Standard Grant
相似海外基金
Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
- 批准号:
10064693 - 财政年份:2024
- 资助金额:
$ 2.45万 - 项目类别:
Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
- 批准号:
23H01264 - 财政年份:2023
- 资助金额:
$ 2.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
- 批准号:
23H01944 - 财政年份:2023
- 资助金额:
$ 2.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 2.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
- 批准号:
23K03064 - 财政年份:2023
- 资助金额:
$ 2.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
- 批准号:
23K03139 - 财政年份:2023
- 资助金额:
$ 2.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
- 批准号:
23K12950 - 财政年份:2023
- 资助金额:
$ 2.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New developments in Javanese Homo erectus research using synchrotron, proteomics and high precision dating
利用同步加速器、蛋白质组学和高精度测年技术进行爪哇直立人研究的新进展
- 批准号:
23K17404 - 财政年份:2023
- 资助金额:
$ 2.45万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Developments of game theory played on networks with incomplete information and their applications to public policies
不完全信息网络博弈论的发展及其在公共政策中的应用
- 批准号:
23K01343 - 财政年份:2023
- 资助金额:
$ 2.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
- 批准号:
23K03266 - 财政年份:2023
- 资助金额:
$ 2.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)