A High-Resolution High-Efficiency Force Spectroscopy for Measuring Drug-DNA Interactions
用于测量药物-DNA 相互作用的高分辨率高效力谱
基本信息
- 批准号:1508845
- 负责人:
- 金额:$ 34.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The molecule-molecule bonds are the basis of molecular recognition and drug targeting in biology. However, this type of interactions remains difficult to quantify, mainly because of the lack of a suitable technique to provide a reliable and characteristic parameter. This proposal will develop a novel force spectroscopy that uses precisely controlled ultrasound to measure the binding forces to distinguish different molecular bonds. Tens of thousands of molecular bonds will be studied simultaneously and resolved based on their different binding forces. The technique, termed as ultrasound force-induced remnant magnetization spectroscopy (usFIRMS), will be a new scientific tool for studying molecular interactions, with high sensitivity, unprecedented resolution, and high detection efficiency. By overcoming the engineering challenges involved in the integration of ultrasound and the magnetic detector, the resulting instrument will be able to identify different molecular interactions precisely, reliably, and efficiently. The application scope of the new technique will focus on drug molecules binding with DNA duplexes to precisely reveal their binding forces and thermodynamics. The results will quantitatively identify the binding selectivity. Lack of selectivity has been a major setback for DNA-targeting drugs. Results obtained by the new technique are thus of high scientific merit. In addition to the engineering advancements and scientific values, the research activities in this proposal will provide excellent educational opportunities for students from a broad background, ranging from graduate students, undergraduates, and high school students. In particular, minority undergraduate students will be actively recruited for participation and ultimately leading a subset of the projects. This proposal aims at establishing the novel usFIRMS technique that uses acoustic radiation force generated by precisely attenuated ultrasound to selectively dissociate noncovalent bonds labeled with magnetically particles. The magnetic signal is monitored by an atomic magnetometer, which is the most sensitive device for magnetic detection. The proposed usFIRMS technique will open up a new field for characterizing noncovalent bonding, which is poorly understood but widely encountered in biochemistry and biology. On the technological front, this technique has three unique capabilities comparing with existing techniques. First, it possesses high force resolution that can clearly resolve molecular bonds with less than two pico-newton difference in the binding forces, which is one order of magnitude better than that of existing techniques. Second, it represents the first time that ultrasound is used for distinguishing molecular bonds. By integrating ultrasound components with an atomic magnetometer, the instrument allows for efficient and automated biochemical analysis that cannot be obtained with any other forms of mechanical forces. Third, the concept of broadband force spectroscopy will resolve different bonds in a single acquisition, instead of the time-consuming force sweeping. This revolutionary advancement will lead to high-throughput applications. On the fundamental science front, the application of usFIRMS in drug-DNA interactions will quantitatively identify the binding selectivity by establishing a new physicochemical parameter of differential binding force. It will serve as a new platform for drug optimization. The binding constants, free energy, and enthalpy can also be precisely determined because different molecular bonds are completely resolved to remove potential interference in measurements. Furthermore, the usFIRMS technique will find broad applications in biological research because of its unique combination of high resolution, high efficiency, and high applicability.
分子-分子键是生物学中分子识别和药物靶向的基础。然而,这种类型的相互作用仍然难以量化,主要是因为缺乏合适的技术来提供可靠的特征参数。该提案将开发一种新的力谱,使用精确控制的超声波来测量结合力,以区分不同的分子键。成千上万的分子键将被同时研究,并根据它们不同的结合力进行解析。该技术,被称为超声力诱导剩余磁化光谱(usFIRMS),将是一个新的科学工具,研究分子相互作用,具有高灵敏度,前所未有的分辨率,和高检测效率。通过克服超声波和磁检测器集成所涉及的工程挑战,所产生的仪器将能够精确、可靠和有效地识别不同的分子相互作用。新技术的应用范围将集中在与DNA双链体结合的药物分子上,以精确揭示其结合力和热力学。结果将定量鉴定结合选择性。缺乏选择性一直是DNA靶向药物的主要挫折。因此,通过新技术获得的结果具有很高的科学价值。除了工程进步和科学价值外,本提案中的研究活动还将为来自广泛背景的学生提供良好的教育机会,包括研究生,本科生和高中生。特别是,少数民族本科生将积极参与,并最终领导一个子集的项目。该建议旨在建立新的usFIRMS技术,该技术利用精确衰减的超声产生的声辐射力来选择性地解离磁性颗粒标记的非共价键。磁信号由原子磁力计监测,原子磁力计是磁检测最灵敏的设备。拟议的usFIRMS技术将开辟一个新的领域,表征非共价键,这是知之甚少,但广泛遇到的生物化学和生物学。在技术方面,与现有技术相比,该技术具有三个独特的能力。首先,它具有很高的力分辨率,可以清楚地解决分子键的结合力小于两个皮牛顿的差异,这是一个数量级优于现有的技术。其次,它代表了超声波首次用于区分分子键。通过将超声组件与原子磁力计集成,该仪器可以进行高效且自动化的生化分析,这是任何其他形式的机械力无法实现的。第三,宽带力谱的概念将在一次采集中解决不同的键,而不是耗时的力扫描。这一革命性的进步将导致高通量应用。在基础科学方面,usFIRMS在药物-DNA相互作用中的应用将通过建立一个新的差异结合力的物理化学参数来定量鉴定结合选择性。它将成为药物优化的新平台。结合常数,自由能和焓也可以精确地确定,因为不同的分子键被完全解析,以消除测量中的潜在干扰。此外,usFIRMS技术将发现在生物研究中的广泛应用,因为其独特的高分辨率,高效率和高适用性的组合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shoujun Xu其他文献
Hosoya Polynomials of TUC4C8® Nanotubes
- DOI:
- 发表时间:
- 期刊:
- 影响因子:
- 作者:
Jianfu Chen;Shoujun Xu;Heping Zhang; - 通讯作者:
The LexCycle on $\overline{P_{2}\cup P_{3}}$-free Cocomparability Graphs
$overline{P_{2}cup P_{3}}$-free 协同可比图上的 LexCycle
- DOI:
10.23638/dmtcs-22-4-13 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Xiaolu Gao;Shoujun Xu - 通讯作者:
Shoujun Xu
Modulation and Visual Detection of Crosslinked EF-G During Translocation
- DOI:
10.1016/j.bpj.2019.11.2988 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Yuhong Wang;Heng Yin;Shoujun Xu - 通讯作者:
Shoujun Xu
The geometrical demonstration of the order of resonant saddle points in C^2
C^2中谐振鞍点阶数的几何论证
- DOI:
- 发表时间:
- 期刊:
- 影响因子:1.4
- 作者:
Hao Wu;Shoujun Xu - 通讯作者:
Shoujun Xu
Evolutionary insights into elongation factor G using AlphaFold and ancestral analysis
利用阿尔法折叠和祖先分析对延伸因子G的进化见解
- DOI:
10.1016/j.compbiomed.2025.110188 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:6.300
- 作者:
Shawonur Rahaman;Jacob H. Steele;Yi Zeng;Shoujun Xu;Yuhong Wang - 通讯作者:
Yuhong Wang
Shoujun Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shoujun Xu', 18)}}的其他基金
Force-modulated FRET for resolving biomolecular motion and bonding
用于解析生物分子运动和键合的力调制 FRET
- 批准号:
2130427 - 财政年份:2021
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Developing a Novel Scanning Magnetic Imaging Technique for Magnetically Labeled Molecules
开发用于磁性标记分子的新型扫描磁成像技术
- 批准号:
1028328 - 财政年份:2010
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
相似海外基金
High-Efficiency, Modular and Low-Cost Hydrogen Liquefaction and Storage
高效、模块化、低成本的氢气液化和储存
- 批准号:
DE240100863 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Early Career Researcher Award
Evaluating the Impact and Efficiency of Engineering the Ocean to Remove CO2
评估海洋工程去除二氧化碳的影响和效率
- 批准号:
DE240100115 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Early Career Researcher Award
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
- 批准号:
2335500 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
- 批准号:
2401619 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
- 批准号:
2311379 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
- 批准号:
LP220200906 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Linkage Projects
ELectrochemical OXidation of cYclic and biogenic substrates for high efficiency production of organic CHEMicals (ELOXYCHEM)
用于高效生产有机化学品的循环和生物底物的电化学氧化 (ELOXYCHEM)
- 批准号:
10110221 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
EU-Funded
ELectrochemical OXidation of cYclic and biogenic substrates for high efficiency production of organic CHEMicals
循环和生物底物的电化学氧化,用于高效生产有机化学品
- 批准号:
10111012 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
EU-Funded
CRII: CSR: Enabling On-Device Continual Learning through Enhancing Efficiency of Computing, Memory, and Data
CRII:CSR:通过提高计算、内存和数据的效率实现设备上的持续学习
- 批准号:
2348376 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
TRTech-PGR: PlantTransform: Boosting Agrobacterium-mediated transformation efficiency in the orphan crop tef (Eragrostis tef) for trait improvement
TRTech-PGR:PlantTransform:提高孤儿作物 tef(画眉草 tef)中农杆菌介导的转化效率,以改善性状
- 批准号:
2327906 - 财政年份:2024
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant