Using Spin-Polarized Carriers in Semiconductor Lasers for Optical Interconnects
在半导体激光器中使用自旋偏振载流子进行光互连
基本信息
- 批准号:1508873
- 负责人:
- 金额:$ 30.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spintronics seeks to manipulate and use the spin that electrons and photons possess to store and process information. Advances in manipulating the spin of an electron and the associated magnetic moment, recognized by the 2007 Nobel Prize in Physics, were crucial for a dramatic increase in the capacity of computer hard drives using spin-valves. Such spin-valves rely on the concept of magnetoresistance in which the magnetic configuration of a device determines if the current flow is permitted or restricted. While spin-valves remain valuable for magnetically storing and sensing information, they are of limited use for signal processing and digital logic; it would be crucial to consider practical paths to other spin-based device schemes. One such opportunity is afforded in this proposal by reexamining how to improve semiconductor lasers, widely used in DVDs, optical communication, and medicine. In commercial semiconductor lasers, a sufficiently large number of electrons and holes, having an opposite charge, are generated and the excess charge carriers recombine to emit coherent photons that possess the same wavelength and phase. Although photons, electrons and holes all have spin, the working principle of conventional semiconductor lasers is completely unaffected by them, because there is no net imbalance between spins pointing in different directions ('up' and 'down'). The proposed work will provide a closely integrated educational and outreach efforts by organizing a week-long Summer Workshop on Lasers, experiment and theory for high school students and organizing symposia to bridge the gap between the spintronics and optics communities at the annual SPIE Optics and Photonics Conference.The proposed research builds on recent experimental advances demonstrating that the operation of lasers can be strongly modified by optically or electrically injecting spin-polarized carriers, having thus a spin imbalance. In the steady-state and low-frequency operation changing the polarization of injected carriers in such spin-lasers has already enabled: (a) lasing threshold reduction and enhanced emission intensity as compared to their conventional (spin-unpolarized) counterparts; (b) strong modulation of the emitted light, even at a fixed injection intensity. The most important applications of spin-lasers are still largely unexplored and pertain to an ultrafast operation and their superior dynamical performance. The bandwidth in conventional lasers is typically limited by the relaxation oscillation frequency. However, spin-lasers should enable a large increase in oscillation frequency , and) a novel and much higher frequency scale governing the polarization oscillation of the emitted light. The PI will develop a detailed modeling of spin-lasers and explore how to: (1) tailor the resonant cavity anisotropy to achieve dynamical bandwidths 100 GHz, (2) reduce parasitic frequency modulation-chirp, and (3) improve switching properties and digital operation; and validate with the experimental data. The PI will study alternative device geometries focused on the recent advances in GaN spin-nanolasers. Conventional metallic interconnects are recognized as the bottleneck in Moore's law scaling and the main source of power dissipation. Since optical interconnects, having lasers as their key element, could address the underlying limitations, this work on spin-lasers may have transformative character and enable novel interconnects.
自旋电子学试图操纵和使用电子和光子拥有的自旋来存储和处理信息。2007年诺贝尔物理学奖认可了在操纵电子自旋和相关磁矩方面的进展,这对使用自旋阀的计算机硬盘容量的大幅增加至关重要。这样的自旋阀依赖于磁阻的概念,在磁阻的概念中,器件的磁配置决定了电流的流动是允许的还是限制的。虽然自旋阀在磁性存储和传感信息方面仍然很有价值,但它们在信号处理和数字逻辑方面的用途有限;考虑其他基于自旋的器件方案的实际途径将是至关重要的。这项提案提供了一个这样的机会,通过重新研究如何改进半导体激光器,半导体激光器广泛应用于DVD、光通信和医学。在商用半导体激光器中,会产生足够多的具有相反电荷的电子和空穴,多余的载流子重新结合,发出具有相同波长和相位的相干光子。虽然光子、电子和空穴都有自旋,但传统半导体激光器的工作原理完全不受它们的影响,因为指向不同方向(向上和向下)的自旋之间没有净不平衡。这项拟议的工作将通过为高中生组织为期一周的激光、实验和理论暑期研讨会以及在一年一度的SPIE光学和光子学会议上组织研讨会来弥合自旋电子学和光学社区之间的差距,从而提供紧密结合的教育和外展努力。拟议的研究建立在最近的实验进展的基础上,该实验表明,通过光学或电子注入自旋偏振载流子可以强烈地改变激光器的运行,从而产生自旋不平衡。在稳态和低频工作中,改变这种自旋激光器中注入载流子的偏振已经能够:(A)与传统的(自旋非偏振)载流子相比,降低激光阈值和增强发射强度;(B)即使在固定的注入强度下,也能对发射光进行强烈的调制。自旋激光最重要的应用在很大程度上仍未被探索,并与超快操作和它们优越的动力学性能有关。传统激光器的带宽通常受到弛豫振荡频率的限制。然而,自旋激光应该能够大幅增加振荡频率,并且)控制发射光的偏振振荡的新的和更高的频率范围。PI将开发一个详细的自旋激光器模型,并探索如何:(1)定制谐振腔各向异性以获得100 GHz的动态带宽;(2)减少寄生频率调制啁啾;(3)改善开关特性和数字操作;并用实验数据进行验证。PI将研究不同的器件几何结构,重点是GaN自旋纳米激光器的最新进展。传统的金属互连被认为是摩尔定律的瓶颈,也是功耗的主要来源。由于以激光为关键元件的光学互连可以解决潜在的限制,因此这项关于自旋激光的工作可能具有变革性,并使新型互连成为可能。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoelectronics with proximitized materials
- DOI:10.1016/j.sse.2019.03.015
- 发表时间:2019-05
- 期刊:
- 影响因子:1.7
- 作者:I. Žutić;A. Matos-Abiague;B. Scharf;T. Zhou;H. Dery;K. Belashchenko
- 通讯作者:I. Žutić;A. Matos-Abiague;B. Scharf;T. Zhou;H. Dery;K. Belashchenko
Probing tunneling spin injection into graphene via bias dependence
通过偏置依赖性探测石墨烯中的隧道自旋注入
- DOI:10.1103/physrevb.98.054412
- 发表时间:2018
- 期刊:
- 影响因子:3.7
- 作者:Zhu, Tiancong;Singh, Simranjeet;Katoch, Jyoti;Wen, Hua;Belashchenko, Kirill;Žutić, Igor;Kawakami, Roland K.
- 通讯作者:Kawakami, Roland K.
Ultrafast spin-lasers
- DOI:10.1038/s41586-019-1073-y
- 发表时间:2019-04-11
- 期刊:
- 影响因子:64.8
- 作者:Lindemann, Markus;Xu, Gaofeng;Gerhardt, Nils C.
- 通讯作者:Gerhardt, Nils C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Zutic其他文献
Igor Zutic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Zutic', 18)}}的其他基金
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
- 批准号:
2233375 - 财政年份:2023
- 资助金额:
$ 30.34万 - 项目类别:
Standard Grant
Integrating Superconducting and Spintronics Devices for Low-Power and High-Speed Operation and Brain-Inspired Computing
集成超导和自旋电子器件以实现低功耗和高速运行以及类脑计算
- 批准号:
2130845 - 财政年份:2021
- 资助金额:
$ 30.34万 - 项目类别:
Standard Grant
Bipolar Spintronic Devices with Two-Dimensional Systems
具有二维系统的双极自旋电子器件
- 批准号:
1810266 - 财政年份:2018
- 资助金额:
$ 30.34万 - 项目类别:
Standard Grant
CAREER: Spin-Polarized Transport and Spintronic Devices
职业:自旋极化传输和自旋电子器件
- 批准号:
0547482 - 财政年份:2006
- 资助金额:
$ 30.34万 - 项目类别:
Continuing Grant
相似国自然基金
SPIN90在幽门螺杆菌空泡毒素VacA致病中的作用及机制研究
- 批准号:82372269
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
解毒方抑制HIF-1α-Exosomal miR-130b-3p-SPIN90介导的巨噬细胞M2型极化改善肝癌免疫抑制微环境的作用机制
- 批准号:82374540
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
SPIN1激活IL-10诱导M2巨噬细胞极化促进胃癌浸润转移的机制研究
- 批准号:82103490
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SPIN1正反馈调控Hippo-YAP信号通路促胃癌侵袭转移的机制研究
- 批准号:82060566
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
自旋为1的Spin-Peierls模型的量子相变研究
- 批准号:
- 批准年份:2020
- 资助金额:18 万元
- 项目类别:专项基金项目
Spin-Peierls化合物的分子设计策略及电操控自旋态研究
- 批准号:
- 批准年份:2020
- 资助金额:64 万元
- 项目类别:面上项目
ETS1-SPIN1-PI3K/Akt网络调控乳腺癌耐药的分子机制研究
- 批准号:81902698
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
紧spin流形上Dirac方程及相关问题的研究
- 批准号:11801499
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Spin-Seebeck效应中多自由度耦合的非平衡动力学研究
- 批准号:11864001
- 批准年份:2018
- 资助金额:42.0 万元
- 项目类别:地区科学基金项目
几乎平坦流形上的Spin结构和配边问题
- 批准号:11801186
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Enantiopure inorganic crystal growth using spin-polarized electrons
利用自旋极化电子生长对映体纯无机晶体
- 批准号:
23H01870 - 财政年份:2023
- 资助金额:
$ 30.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Direct measurement of ultra high magnetic field by using spin polarized neutron
利用自旋极化中子直接测量超高磁场
- 批准号:
20K20922 - 财政年份:2020
- 资助金额:
$ 30.34万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of a novel spin-analysis using a coherent spin-polarized electron beam
使用相干自旋极化电子束开发新型自旋分析
- 批准号:
17H02737 - 财政年份:2017
- 资助金额:
$ 30.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Atomic-scale defect control of electric field driven Fe/MgO magnetic device using spin-polarized STM
使用自旋极化 STM 进行电场驱动 Fe/MgO 磁性器件的原子级缺陷控制
- 批准号:
17K19023 - 财政年份:2017
- 资助金额:
$ 30.34万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Study on catalytic activity of oxide surface using single molecule labeling and spin polarized tunneling electron spectroscopy
单分子标记和自旋极化隧道电子能谱研究氧化物表面催化活性
- 批准号:
16H03863 - 财政年份:2016
- 资助金额:
$ 30.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of spin-polarized one-dementional dedge state using by using independently-driven four-tip STM
利用独立驱动的四尖端STM研究自旋极化一维边缘态
- 批准号:
15K17464 - 财政年份:2015
- 资助金额:
$ 30.34万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Time-Correlation Measurement using Coherent Spin-Polarized Electron Beam
使用相干自旋偏振电子束进行时间相关测量
- 批准号:
15K13404 - 财政年份:2015
- 资助金额:
$ 30.34万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Search for novel electron spin filter using spin-polarized surface states
使用自旋极化表面态寻找新型电子自旋滤波器
- 批准号:
26887024 - 财政年份:2014
- 资助金额:
$ 30.34万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Direct observation of dynamic magnetization reversal in magnetic nano-dots using spin-polarized STM
使用自旋极化 STM 直接观察磁性纳米点的动态磁化反转
- 批准号:
26790004 - 财政年份:2014
- 资助金额:
$ 30.34万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Novel spin-polarized electron source using a non-linear optical absorption
使用非线性光学吸收的新型自旋极化电子源
- 批准号:
25706031 - 财政年份:2013
- 资助金额:
$ 30.34万 - 项目类别:
Grant-in-Aid for Young Scientists (A)














{{item.name}}会员




