Collaborative Research: Spintronics Without Spin Injection
合作研究:无需自旋注入的自旋电子学
基本信息
- 批准号:1508991
- 负责人:
- 金额:$ 19.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The continued scaling of CMOS technology is being driven by various approaches including spin-based electronics (or 'spintronics') due to potential gains in low-power operation, and by the prospect of realizing new forms of non-volatile, on-chip data storage. However, spintronic devices typically exhibit poor magnetoresistive values, except at cryogenic temperatures, and there are often practical issues regarding their manufacturability. Consequently, the full potential impact of spintronics on technology and society has remained unrealized. The ability to induce a high degree of spin polarization in epitaxially-formed graphene layers, deposited on complex oxides, is a major goal of this research; one that will allow the development of high performance, non-volatile, spin-based devices, capable of operating above room temperature. Social and economic benefits of such advances is huge, allowing not only the continuation of smaller, cheaper, and faster computing, but also making possible the development of massively-parallel, yet low-power and fault-tolerant, computer architectures. Graduate students will be trained in the interdisciplinary aspects of understanding fundamental relationships between surface/interface chemistry, charge and spin transport, and device physics. This mentoring also extends to the recruitment of undergraduate and high school students through existing, proven programs at the University of Buffalo, the University of Nebraska-Lincoln and at the University of North Texas.In the interest of a new generation of post-CMOS nanoelectronics, technological challenges of spintronic devices include achieving high-fidelity spin-polarized carrier injection into a nonmagnetic semiconductor, and; realization of electrical schemes for the manipulation of magnetism while not compromising the possible energy gains offered by spintronics. This program provides a solution by realizing practical, graphene-based spintronic devices, based on industry-compatible graphene growth methods and operating at or above room temperature. These devices feature directly-grown, high-quality graphene on magnetic/multiferroic oxide substrates, and will exploit the spin polarization induced in the graphene channel through its interaction with the substrate, thereby obviating the need for efficient spin injection from ferromagnetic electrodes. The devices will furthermore be switched by means of the electric field applied across insulating oxides, thereby ensuring low-power operation. This project combines studies of the interfacial-chemistry of graphene/oxide hetero-junction formation, its effects on graphene spin polarization, and the development and testing of spin-field effect transistors. These devices are based on the direct growth of graphene/oxide heterojunctions, including Co3O4(111), Cr2O3(0001), and other ordered multiferroic oxides. The goal is to have a fundamental insight into how surface chemistry impacts spin transport, and also to yield manufacturable graphene-based spintronic devices, capable of exhibiting superior per-formance (MR200%) in operation above room temperature.
CMOS技术的持续缩放受到各种方法的驱动,包括由于低功率操作中的潜在增益而导致的基于自旋的电子学(或“自旋电子学”),以及实现新形式的非易失性片上数据存储的前景。 然而,除了在低温下,自旋电子器件通常表现出差的磁阻值,并且通常存在关于它们的可制造性的实际问题。因此,自旋电子学对技术和社会的全部潜在影响仍未实现。在沉积在复合氧化物上的外延形成的石墨烯层中诱导高度自旋极化的能力是本研究的主要目标;这将允许开发能够在室温以上操作的高性能、非易失性、基于自旋的器件。这种进步的社会和经济效益是巨大的,不仅允许继续更小,更便宜,更快的计算,而且还使开发并行,低功耗和容错的计算机架构成为可能。研究生将在理解表面/界面化学,电荷和自旋输运以及器件物理之间的基本关系的跨学科方面进行培训。 这种指导也通过布法罗大学、内布拉斯加大学林肯分校和北德克萨斯大学现有的、经过验证的项目扩展到本科生和高中生的招聘。为了新一代后CMOS纳米电子学的利益,自旋电子器件的技术挑战包括实现高保真的自旋极化载流子注入到半导体中,以及;实现操纵磁性的电子方案,同时不损害自旋电子学提供的可能的能量增益。该计划通过实现实用的石墨烯基自旋电子器件提供了一种解决方案,该器件基于行业兼容的石墨烯生长方法,并在室温或高于室温下运行。这些器件的特点是在磁性/多铁性氧化物衬底上直接生长的高质量石墨烯,并且将利用石墨烯通道中通过其与衬底的相互作用而诱导的自旋极化,从而消除了对来自铁磁电极的有效自旋注入的需要。此外,这些器件将通过在绝缘氧化物上施加的电场进行开关,从而确保低功率操作。该项目结合了石墨烯/氧化物异质结形成的界面化学研究,其对石墨烯自旋极化的影响,以及自旋场效应晶体管的开发和测试。这些器件基于石墨烯/氧化物异质结的直接生长,包括Co 3 O 4(111)、Cr2 O3(0001)和其他有序的多铁性氧化物。目标是对表面化学如何影响自旋输运有基本的了解,并且还产生可制造的基于石墨烯的自旋电子器件,其能够在高于室温的操作中表现出上级的每单位质量(MR 200%)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffry Kelber其他文献
Jeffry Kelber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffry Kelber', 18)}}的其他基金
Metal Oxynitrides: Tuning Metal-N and Metal-O Interactions for Improved Electrocatalytic Properties at the Liquid/Solid Interface
金属氮氧化物:调节金属-N 和金属-O 相互作用以改善液/固界面的电催化性能
- 批准号:
2112864 - 财政年份:2021
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Fundamental Interactions at the Liquid-Solid Interface: Combined UHV-Electrochemical-Optical Studies at Clean and Adsorbate Modified Electrode Surfaces
液-固界面的基本相互作用:清洁和吸附改性电极表面的特高压-电化学-光学联合研究
- 批准号:
9714580 - 财政年份:1998
- 资助金额:
$ 19.99万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Collaborative Research: Correlating Device Performance and Interfacial Properties for Weyl Spintronics
合作研究:关联 Weyl 自旋电子学的器件性能和界面特性
- 批准号:
2031870 - 财政年份:2020
- 资助金额:
$ 19.99万 - 项目类别:
Continuing Grant
Collaborative Research: Correlating Device Performance and Interfacial Properties for Weyl Spintronics
合作研究:关联 Weyl 自旋电子学的器件性能和界面特性
- 批准号:
2031871 - 财政年份:2020
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Cross-sectional research for opt-spintronics explored by time-, spin- and angle-resolved photoemission
通过时间、自旋和角度分辨光电子探索光自旋电子学的横断面研究
- 批准号:
19H02683 - 财政年份:2019
- 资助金额:
$ 19.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
MRI: Acquisition of a Physical Properties Measurement System VersaLab for Research in the Areas of Spintronics and Advanced Nanostructured Magnetic Materials
MRI:购买物理特性测量系统 VersaLab,用于自旋电子学和先进纳米结构磁性材料领域的研究
- 批准号:
1827433 - 财政年份:2018
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Theoretical research on antiferromagnetic spintronics
反铁磁自旋电子学理论研究
- 批准号:
17J03368 - 财政年份:2017
- 资助金额:
$ 19.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Canada Research Chair in Novel Materials for Spintronics
加拿大自旋电子学新材料研究主席
- 批准号:
1000228164-2011 - 财政年份:2016
- 资助金额:
$ 19.99万 - 项目类别:
Canada Research Chairs
Collaborative Research: Spintronics Without Spin Injection
合作研究:无需自旋注入的自旋电子学
- 批准号:
1509221 - 财政年份:2015
- 资助金额:
$ 19.99万 - 项目类别:
Standard Grant
Electron Paramagnetic Resonance Spectrometer for Research in Catalysis, Photocatalysis, Semiconductors, Spintronics and Nanomaterials
用于催化、光催化、半导体、自旋电子学和纳米材料研究的电子顺磁共振波谱仪
- 批准号:
RTI-2016-00301 - 财政年份:2015
- 资助金额:
$ 19.99万 - 项目类别:
Research Tools and Instruments