Stochastic Control for Decentralized Systems: A Common Information Approach

分散系统的随机控制:一种通用信息方法

基本信息

  • 批准号:
    1509812
  • 负责人:
  • 金额:
    $ 30.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Engineering systems involve a wide array of decision-making problems. Planning the production schedule for a power generator, controlling the motion of an aircraft, or selectively activating sensors to make environmental observations, all require multiple decisions to be made over time, very often in face of uncertainties about the system and the future. The success of many technological systems can be attributed to the successful solution of their underlying decision-making problems. Many of these decision-making problems were addressed under the common assumption of centrality of information and centrality of decision-making. Modern technological and economic developments, however, have led to increasingly decentralized systems. For example, the advent of smart sensors has led to sensing and monitoring systems that can make decisions in a distributed manner, the prevalence of networks has coupled individual social and economic decisions, the push for de-regulation has resulted in competitive decision-making in power systems. In all these systems, the centralized command structure is being replaced, to a varying degree, by a decentralized one. The future success of these systems will depend on our ability to understand, analyze and solve the decentralized decision-making problems these systems create. The objective of the proposed research is to develop a systematic framework for sequential decision-making problems that arise in decentralized systems operating in dynamic and uncertain environments. The proposed research will impact decentralized and networked systems in diverse application domains including infrastructure systems like power, transportation and communication networks, sensing and surveillance systems like teams of unmanned aerial vehicles or robots as well as networked control systems.This project aims to develop a systematic theory of stochastic control for decentralized and networked systems. Such systems involve a network of agents making decisions based on different information about the environment and/or about each other. In many applications, different decision makers share a common system-wide objective and should behave as cooperating members of the same team rather than competing players in a game. In such cooperative systems with a common objective, the global optimization of this objective with respect to agent decision strategies rather than game-theoretic equilibrium identification is a more appropriate solution approach. The goal of this proposal is to develop a dynamic programming like global optimization approach for sequential, decentralized decision-making problems. In particular, the proposed research will investigate decentralized control of autonomous vehicles/agents, control of decentralized finite state systems and control of information flow in sensor networks and networked control systems. The project will also explore the connections between decentralized cooperative systems and stochastic games among players with asymmetric information. The educational impact of the proposed research will include providing graduate students with a multi- disciplinary training in stochastic control, game theory, optimization and networks, development of a new graduate level course focusing on decentralized decision-making in networked systems and supporting women PhD students in our research program.
工程系统涉及广泛的决策问题。规划发电机的生产计划,控制飞机的运动,或者选择性地激活传感器进行环境观测,这些都需要随着时间的推移做出多个决定,往往是面对系统和未来的不确定性。许多技术系统的成功可以归功于它们基本决策问题的成功解决。其中许多决策问题都是在信息中心性和决策中心性的共同假设下处理的。然而,现代技术和经济的发展导致了越来越分散的系统。例如,智能传感器的出现导致了能够以分布式方式做出决策的传感和监测系统,网络的普及将个人的社会和经济决策结合在一起,对取消管制的推动导致了电力系统的竞争性决策。在所有这些系统中,中央集权的指挥结构正在不同程度地被分散的指挥结构所取代。这些系统未来的成功将取决于我们理解、分析和解决这些系统造成的分散决策问题的能力。拟议研究的目标是为在动态和不确定环境中运行的分散系统中出现的顺序决策问题开发一个系统框架。这项研究将影响分散和网络化系统在不同应用领域的应用,包括电力、交通和通信网络等基础设施系统,无人机或机器人团队等传感和监控系统,以及网络控制系统。本项目旨在发展分散和网络化系统的随机控制系统理论。这样的系统涉及一个代理人网络,根据关于环境和/或彼此的不同信息做出决策。在许多应用程序中,不同的决策者共享一个共同的系统范围目标,并且应该表现为同一团队中的合作成员,而不是游戏中的竞争对手。在这种具有共同目标的合作系统中,相对于主体决策策略的全局最优,而不是博弈论均衡识别是更合适的求解方法。该建议的目标是开发一种动态规划类全局优化方法来解决顺序的、分散的决策问题。特别是,拟议的研究将研究自主车辆/代理的分散控制、分散有限状态系统的控制以及传感器网络和网络控制系统中的信息流控制。该项目还将探索分散合作系统和具有不对称信息的参与者之间的随机博弈之间的联系。拟议研究的教育影响将包括为研究生提供随机控制、博弈论、优化和网络方面的多学科培训,开发一门新的研究生水平课程,重点是网络系统中的分散决策,以及在我们的研究计划中支持女性博士生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashutosh Nayyar其他文献

Correction to: Upper and Lower Values in Zero-Sum Stochastic Games with Asymmetric Information
  • DOI:
    10.1007/s13235-020-00366-9
  • 发表时间:
    2020-09-16
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Dhruva Kartik;Ashutosh Nayyar
  • 通讯作者:
    Ashutosh Nayyar

Ashutosh Nayyar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashutosh Nayyar', 18)}}的其他基金

Learning Methods for Decentralized Control in Multi-Agent Systems
多智能体系统中分散控制的学习方法
  • 批准号:
    2025732
  • 财政年份:
    2020
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant
CAREER: Strategic decision-making for communication and control in decentralized systems
职业:分散系统中通信和控制的战略决策
  • 批准号:
    1750041
  • 财政年份:
    2018
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Standard Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Decentralized stochastic control of multi-agent teams: approximation, learning, and signaling
多智能体团队的去中心化随机控制:逼近、学习和信号发送
  • 批准号:
    RGPIN-2021-03511
  • 财政年份:
    2022
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Discovery Grants Program - Individual
Decentralized stochastic control of multi-agent teams: approximation, learning, and signaling
多智能体团队的去中心化随机控制:逼近、学习和信号发送
  • 批准号:
    RGPIN-2021-03511
  • 财政年份:
    2021
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Discovery Grants Program - Individual
Decentralized stochastic control: information structures, communication, and learning
分散随机控制:信息结构、通信和学习
  • 批准号:
    RGPIN-2016-05165
  • 财政年份:
    2020
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Discovery Grants Program - Individual
Decentralized stochastic control: information structures, communication, and learning
分散随机控制:信息结构、通信和学习
  • 批准号:
    RGPIN-2016-05165
  • 财政年份:
    2019
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Discovery Grants Program - Individual
Decentralized stochastic control: information structures, communication, and learning
分散随机控制:信息结构、通信和学习
  • 批准号:
    493011-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Decentralized stochastic control: information structures, communication, and learning
分散随机控制:信息结构、通信和学习
  • 批准号:
    RGPIN-2016-05165
  • 财政年份:
    2018
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Discovery Grants Program - Individual
Decentralized stochastic control: information structures, communication, and learning
分散随机控制:信息结构、通信和学习
  • 批准号:
    493011-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Decentralized stochastic control: information structures, communication, and learning
分散随机控制:信息结构、通信和学习
  • 批准号:
    RGPIN-2016-05165
  • 财政年份:
    2017
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Discovery Grants Program - Individual
Decentralized stochastic control: information structures, communication, and learning
分散随机控制:信息结构、通信和学习
  • 批准号:
    RGPIN-2016-05165
  • 财政年份:
    2016
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Discovery Grants Program - Individual
Decentralized Stochastic Control of Stochastic Games
随机博弈的分散随机控制
  • 批准号:
    492891-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了