Spaces with Negative and Nonpositive Curvature
具有负曲率和非正曲率的空间
基本信息
- 批准号:1510594
- 负责人:
- 金额:$ 30.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1510594, Principal Investigator: Pedro OntanedaThis project will study the construction of negatively curved and nonpositively curved metrics on geometric spaces. In elementary school we learn that the sum of the interior angles of a triangle on the plane is 180 degrees. This fact characterizes Euclidean geometry, which is the model space of zero curvature. Similarly, negatively curved geometries are characterized by the fact that the sum of the interior angles of (small non-degenerate) triangles is always less than 180 degrees. Non-positively curved geometries are defined in the same way: the sums mentioned above are less than or equal to 180 degrees. In this project we will try to construct more of these geometries on spaces, either on singular spaces or non-singular spaces (non-singular spaces are called manifolds).Recent work has found smoothings of some of the singular metrics on hyperbolized cube manifolds produced by the methods of Charney and Davis to obtain Riemannian metrics with curvatures close to -1. These constructions have needed relatively large pieces for the Charney-Davis hyperbolization construction and a new project seeks to eliminate this requirement. Several projects concern the space of all negatively curved metrics on a space, addressing the generalizations to this context of the classical moduli and Teichmueller spaces. One line of investigation continues the study of the potentially nontrivial homotopy type of the nonclassical counterparts to Teichmueller space, while another studies topological invariance: If M and N are smooth manifolds which are homeomorphic but not diffeomorphic, and if M supports a negatively curved Riemannian metric, must N also carry such a metric?
项目编号:DMS 1510594,项目负责人:Pedro ontaneda,主要研究几何空间上负弯曲和非正弯曲度量的构造。小学时我们学过平面上三角形内角的和是180度。这是欧几里德几何的特征,它是零曲率的模型空间。类似地,负弯曲几何的特点是(小的非简并)三角形的内角之和总是小于180度。非正弯曲几何的定义方式相同:上面提到的和小于或等于180度。在这个项目中,我们将尝试在空间上构建更多这样的几何,无论是在奇异空间上还是在非奇异空间上(非奇异空间被称为流形)。最近的工作发现了一些奇异度量在由Charney和Davis的方法产生的双曲立方流形上的光滑性,以获得曲率接近-1的黎曼度量。这些结构需要相对较大的Charney-Davis夸张结构,而一个新项目试图消除这一要求。几个项目涉及空间上所有负弯曲度量的空间,解决了经典模和Teichmueller空间的推广。一方面继续研究Teichmueller空间的非经典对构体的潜在非平凡同伦类型,另一方面研究拓扑不变性:如果M和N是同纯而非微分同构的光滑流形,如果M支持负弯曲的黎曼度规,那么N是否也必须携带这样的度规?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedro Ontaneda其他文献
Closed geodesics on geodesic spaces of curvature <math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml10" display="inline" overflow="scroll" altimg="si10.gif" class="math"><mo><</mo><mi>∞</mi></math>
- DOI:
10.1016/j.exmath.2018.12.001 - 发表时间:
2020-03-01 - 期刊:
- 影响因子:
- 作者:
Pedro Ontaneda;Cristina Salviano - 通讯作者:
Cristina Salviano
Teichmüller Spaces and Negatively Curved Fiber Bundles
- DOI:
10.1007/s00039-010-0098-z - 发表时间:
2010-11-01 - 期刊:
- 影响因子:2.500
- 作者:
Tom Farrell;Pedro Ontaneda - 通讯作者:
Pedro Ontaneda
Some Remarks on the Geodesic Completeness of Compact Nonpositively Curved Spaces
- DOI:
10.1023/b:geom.0000022865.95730.4e - 发表时间:
2004-03-01 - 期刊:
- 影响因子:0.500
- 作者:
Pedro Ontaneda - 通讯作者:
Pedro Ontaneda
Pedro Ontaneda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pedro Ontaneda', 18)}}的其他基金
Challenges in Negative and Nonpositive Curvature
负曲率和非正曲率的挑战
- 批准号:
1906538 - 财政年份:2019
- 资助金额:
$ 30.94万 - 项目类别:
Continuing Grant
Negative and Nonpositive Curvature in Geometry, Topology and Dynamics
几何、拓扑和动力学中的负曲率和非正曲率
- 批准号:
1206622 - 财政年份:2012
- 资助金额:
$ 30.94万 - 项目类别:
Continuing Grant
The Space of Negatively Curved Metrics
负曲线度量空间
- 批准号:
0905896 - 财政年份:2009
- 资助金额:
$ 30.94万 - 项目类别:
Continuing Grant
Mathematical Sciences: Non-Positive Curvature, Triangulations and Topology
数学科学:非正曲率、三角剖分和拓扑
- 批准号:
9505136 - 财政年份:1995
- 资助金额:
$ 30.94万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 30.94万 - 项目类别:
Continuing Grant
Characterization of dominant negative ACTA2 variants : a zebrafish model for non-syndromic aortic aneurysms
显性失活 ACTA2 变异的表征:非综合征性主动脉瘤的斑马鱼模型
- 批准号:
24K18891 - 财政年份:2024
- 资助金额:
$ 30.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Quad negative breast cancerに対する新たなプレシジョン・メディシン治療戦略
四阴性乳腺癌精准医学治疗新策略
- 批准号:
24K11748 - 财政年份:2024
- 资助金额:
$ 30.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular grammar of SurA-client interactions in the periplasm of gram-negative bacteria
革兰氏阴性菌周质中 SurA-客户相互作用的分子语法
- 批准号:
BB/Y00034X/1 - 财政年份:2024
- 资助金额:
$ 30.94万 - 项目类别:
Research Grant
SBIR Phase I: Combating Multi-Drug Resistant Gram-negative Healthcare-Associated Infections
SBIR 第一阶段:对抗多重耐药革兰氏阴性医疗相关感染
- 批准号:
2310453 - 财政年份:2024
- 资助金额:
$ 30.94万 - 项目类别:
Standard Grant
Carbon-negative concrete produced with innovative artificial aggregates
采用创新人造骨料生产的负碳混凝土
- 批准号:
DE240101261 - 财政年份:2024
- 资助金额:
$ 30.94万 - 项目类别:
Discovery Early Career Researcher Award
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
- 批准号:
2409880 - 财政年份:2023
- 资助金额:
$ 30.94万 - 项目类别:
Standard Grant
CAREER: Harnessing the Positive Power of Negative Links for Network Analytics
职业:利用负面链接的积极力量进行网络分析
- 批准号:
2239881 - 财政年份:2023
- 资助金额:
$ 30.94万 - 项目类别:
Continuing Grant
Study of the risk factors, negative health outcomes, and prevention of respiratory sarcopenia
呼吸肌少症的危险因素、负面健康结果和预防的研究
- 批准号:
23K10272 - 财政年份:2023
- 资助金额:
$ 30.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of CD44 bearing TJA-II binding glycans in therapy-resistant subset of triple negative breast cancer
携带 CD44 的 TJA-II 结合聚糖在三阴性乳腺癌耐药亚型中的作用
- 批准号:
23K06748 - 财政年份:2023
- 资助金额:
$ 30.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)