UNS: Three-Dimensional Porous Nanographene for Highly Efficient Energy Storage in Li-Ion Batteries
UNS:用于锂离子电池高效储能的三维多孔纳米石墨烯
基本信息
- 批准号:1511528
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Gang WuProposal Number: 1511528Rechargeable lithium ion batteries support the development of sustainable energy systems by storing electricity generated by renewable resources such as wind and solar energy, or by powering zero-emission electric vehicles charged by electricity from renewable resources. However, the storage capacity, recharging time, and power output from current lithium ion batteries must improve to enable further market penetration for electric vehicles. The goal of this project is to redesign the carbon electrode of the battery to make fundamental improvements in performance. The new carbon electrode will be based on graphene, a form of carbon that is ordered into sheets one atom thick. New methods will be developed to form graphene into a three-dimensional structure designed through scientific principles to provide high capacity, rapid recharge times, and stability during repeated charging. The educational activities associated with this project include summer research experiences for three undergraduate students from under-represented groups in engineering, and hands-on outreach to elementary schools in the Buffalo, New York area.Nanostructured graphene has emerged as a potentially transformative material for replacing porous carbon in the anode of rechargeable lithium ion batteries for transportation applications because it offers the potential for high surface area and electronic conductivity, leading to higher capacity and faster charge/discharge rates. However, under repeated charge/discharge cycles, the storage capacity fades rapidly because the graphene sheets restack. New synthesis approaches for nanographene are needed to address this problem and to extend the capabilities of graphene for use in lithium ion battery anodes. The overall goals of this proposed research are to rationally design stable, three-dimensional graphene anodes of defined structure and electronic properties for lithium ion batteries through atomic level self-assembly and heteroatom substitution, and then develop a fundamental understanding of lithium ion insertion and extraction processes in this anode. The proposed research has three objectives. The first objective is to develop new and scalable synthetic protocols to prepare a series of structurally stable, nitrogen(N)-doped nanographenes with functional linkers via Suzuki coupling and covalent stabilization, and then fine-tune the lattice geometry and electronic properties of the final three-dimensional structure through controlled d-lattice spacing and N-doping level. Material properties will be characterized by photoluminescence, nuclear magnetic resonance, and mass spectroscopies. The second objective is to establish a fundamental understanding of lithium ion adsorption, desorption, and diffusion kinetics on doped nanographene using nanographene model systems of well-defined molecular size, structure, and doping. Towards this end, in situ electrochemical neutron experiments complimented by high-resolution transmission electron microscope imaging and microanalysis techniques will be used to measure changes in composition, structure, and thermodynamic processes of graphene anodes during lithium ion insertion/extraction reactions. The lithium reaction mechanisms on nitrogen-doped nanographene will be investigated computationally by Density Functional Theory (DFT) and nanoscale dynamic simulation. The third objective is to design and synthesize structured three-dimensional porous nanographene anode materials with chemical and structural properties designed to optimize lithium capacity, diffusion rate, and cyclic stability. Research outcomes will also be used to develop instructional materials for a new course on advanced energy materials at the University of Buffalo.
主要研究者:Gang Wu Proposal Number:1511528可充电锂离子电池通过储存风能和太阳能等可再生资源产生的电力,或为零排放电动汽车提供动力,支持可持续能源系统的发展。 然而,当前锂离子电池的存储容量、充电时间和功率输出必须提高,才能进一步渗透电动汽车的市场。 该项目的目标是重新设计电池的碳电极,以从根本上改善性能。 新的碳电极将基于石墨烯,石墨烯是一种有序排列成一个原子厚的碳片的形式。 将开发新方法,将石墨烯形成通过科学原理设计的三维结构,以提供高容量,快速充电时间和重复充电期间的稳定性。 与该项目相关的教育活动包括来自工程学代表性不足群体的三名本科生的暑期研究经验,以及对布法罗小学的实践推广,纳米结构的石墨烯已经成为用于替代用于运输应用的可充电锂离子电池的阳极中的多孔碳的潜在变革性材料,因为它提供了高表面活性的潜力。面积和电子传导性,导致更高的容量和更快的充电/放电速率。 然而,在重复的充电/放电循环下,由于石墨烯片重新堆叠,存储容量迅速衰减。 需要纳米石墨烯的新合成方法来解决这个问题并扩展石墨烯用于锂离子电池阳极的能力。 本研究的总体目标是通过原子水平的自组装和杂原子取代来合理设计用于锂离子电池的具有确定结构和电子特性的稳定的三维石墨烯阳极,然后对该阳极中的锂离子插入和提取过程进行基本了解。 这项研究有三个目标。 第一个目标是开发新的和可扩展的合成方案,以通过Suzuki偶联和共价稳定化制备一系列结构稳定的具有功能性连接体的氮(N)掺杂纳米石墨烯,然后通过控制d-晶格间距和N-掺杂水平来微调最终三维结构的晶格几何形状和电子性质。 材料特性将通过光致发光、核磁共振和质谱来表征。第二个目标是建立一个基本的理解锂离子的吸附,解吸和扩散动力学的掺杂纳米石墨烯使用纳米石墨烯模型系统的明确定义的分子大小,结构和掺杂。 为此,原位电化学中子实验辅以高分辨率透射电子显微镜成像和微量分析技术将用于测量锂离子插入/提取反应期间石墨烯阳极的组成,结构和热力学过程的变化。 利用密度泛函理论(DFT)和纳米尺度动力学模拟研究了锂在氮掺杂纳米石墨烯上的反应机理。 第三个目标是设计和合成结构化的三维多孔纳米石墨烯阳极材料,其化学和结构特性被设计为优化锂容量、扩散速率和循环稳定性。研究成果还将用于为布法罗大学新开设的高级能源材料课程编写教材。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Building and deploying a cyberinfrastructure for the data-driven design of chemical systems and the exploration of chemical space
- DOI:10.1080/08927022.2018.1471692
- 发表时间:2018-01-01
- 期刊:
- 影响因子:2.1
- 作者:Hachmann, Johannes;Afzal, Mohammad Atif Faiz;Pal, Yudhajit
- 通讯作者:Pal, Yudhajit
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Wu其他文献
Dose Reduction for Digital Breast Tomosynthesis by Patch-Based Denoising in Reconstruction
重建中基于补丁的去噪减少数字乳房断层合成的剂量
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Gang Wu;J. Mainprize;M. Yaffe - 通讯作者:
M. Yaffe
betaglycan and FIBP in granulosa cells in cattle ovarian follicle development: a functional role for Differential expression of signal transduction factors in
牛卵泡发育过程中颗粒细胞中的β聚糖和FIBP:信号转导因子差异表达的功能作用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
George W. Smith;P. Coussens;J. Ireland;M. Mihm;M. Canty;A. Zielak;P. Baker;P. Lonergan;Adrian V Buensuceso;B. Deroo;Hai;Kunyu Yang;Gang Wu;Junjie Chen;Shuangbing Xu;Xu Li;Zihua Gong;Wenqi Wang;Yujing Li;B. Nair - 通讯作者:
B. Nair
Biological Reactions to Temporary Anchorage Devices
对临时锚固装置的生物反应
- DOI:
10.1002/9781118916148.ch7 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Gang Wu;Jingjing Guo;Haikun Hu;V. Everts - 通讯作者:
V. Everts
Review of 43 Patients With Autoimmune Pancreatitis Based on the International Consensus Diagnostic Criteria in China
基于国际共识诊断标准的中国43例自身免疫性胰腺炎患者回顾
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.9
- 作者:
Gang Wu;Xue;Tianlong Wang;Qi Zhang;Hui He;Mingjun Sun;Yongfeng Liu - 通讯作者:
Yongfeng Liu
Denoising and error correction in wireless sensor networks
无线传感器网络中的去噪和纠错
- DOI:
10.1109/icif.2010.5712004 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Qing Ling;Gang Wu;Z. Tian - 通讯作者:
Z. Tian
Gang Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Wu', 18)}}的其他基金
Collaborative Research: Engineering Atomically Dispersed Metal-Site Air Cathodes via Electrospinning at Multi-Scales for Low-Temperature Fuel Cells
合作研究:通过多尺度静电纺丝设计原子分散金属位点空气阴极用于低温燃料电池
- 批准号:
2223467 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Designing Nitrogen Coordinated Single Atomic Metal Electrocatalysts for Selective CO2 Reduction to CO
合作研究:设计氮配位单原子金属电催化剂用于选择性将 CO2 还原为 CO
- 批准号:
1804326 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Engineering Nanocarbon Air Cathodes for High-Temperature Solid-State Li-O2 Batteries
用于高温固态锂氧电池的工程纳米碳空气阴极
- 批准号:
1604392 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Three dimensional material flow visualization in dissimilar friction stir welding by X-ray transmission imaging
通过 X 射线透射成像实现异种材料搅拌摩擦焊中的三维材料流动可视化
- 批准号:
24K17532 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
I-Corps: Vision analysis system using inferred three-dimensional data to analyze and correct a user’s pose in relation to 3D space
I-Corps:视觉分析系统,使用推断的三维数据来分析和纠正用户相对于 3D 空间的姿势
- 批准号:
2403992 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
3DIr4E: Three-Dimensional low Ir loading anodes For proton exchange membrane water Electrolyzers
3DIr4E:用于质子交换膜水电解槽的三维低 Ir 负载阳极
- 批准号:
EP/Z001382/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Three-Dimensional Multilayer Nanomagnetic Arrays for Neuromorphic Low-Energy Magnonic Processing
用于神经形态低能磁处理的三维多层纳米磁性阵列
- 批准号:
EP/Y003276/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Three-dimensional solar-energy-driven hydrogen generation from ammonia
三维太阳能驱动的氨制氢
- 批准号:
DP240102787 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Extremely efficient fully three-dimensional hydrodynamic simulations of supernova remnants for the new age of microcalorimetric X-ray astronomy
针对微量热 X 射线天文学新时代的超新星遗迹进行极其高效的全三维流体动力学模拟
- 批准号:
24K07092 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Advancing AI in Science Education (AASE): A Comprehensive Approach to Equity, Inclusion, and Three-Dimensional Learning
会议:推进科学教育中的人工智能 (AASE):公平、包容和三维学习的综合方法
- 批准号:
2332964 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
- 批准号:
2341368 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Hopscotch 4 Scientific Investigation: Promoting Elementary Preservice Teacher Three-Dimensional Learning during Science Content Courses
跳房子4科学调查:在科学内容课程中促进小学职前教师三维学习
- 批准号:
2315617 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Development of PU signal sampling technique of fluxgate magnetometer and progressive comprehension of three-dimensional magnetic field in space
磁通门磁力计PU信号采样技术的发展与空间三维磁场的渐进理解
- 批准号:
23H01230 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




