Network Detection and Analysis Through Semi-Parametric Odds Ratio Model

通过半参数优势比模型进行网络检测和分析

基本信息

  • 批准号:
    1512930
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

The objective of this research is to develop innovative statistical methods for tackling the challenging problems in the analysis of massive data generated in the studies of complex systems, such as biological systems, financial systems, and social networks. This project addresses the lack of flexible statistical models and methods for the analysis of high-dimensional network data with mixed categorical and continuous measurements. The methodology and software under development increase the accuracy of the network detection, estimation, and interpretation, which have widespread applications. One such application is to genomic research that holds great promise for better disease prevention, diagnosis, and treatment. The project's approach to network analysis can reveal more accurate structures of causal pathway and system functionalities, which in turn can lead to better understand of the underlying biological mechanisms. The project also provides training opportunities for the next generation statisticians doing research on high-dimensional data.Specifically, this project studies a flexible alternative to the traditional Gaussian model in the analysis of multivariate data. Such data may be biasedly sampled and may also include many discrete variables, which makes the data inherently non-Gaussianly distributed. The semiparametric odds ratio model under study in this project unifies and extends the Gaussian models for continuous data and the log-linear model for categorical data. This approach not only models complex associations with highly interpretable model parameters, it also naturally address the problem of biased sampling designs frequently encountered in biomedical data collection. The penalized likelihood approach can consistently detect sparse associations among mixed continuous and discrete variables (i.e., sparse association networks with mixed nodes). Novel theory for consistent sparse network detection and algorithms for implementing the methods will be developed. In comparison to the traditional Gaussian model for association network detection, the methods under study have the advantages of detecting sparse association between groups of variables without modeling the association within the groups of variables in high-dimensional settings. The research results can substantially improve the information extraction from high-dimensional data and the interpretation of such information.
这项研究的目的是开发创新的统计方法,以解决在生物系统、金融系统和社会网络等复杂系统研究中产生的海量数据分析中的挑战性问题。该项目解决了缺乏灵活的统计模型和方法来分析混合分类和连续测量的高维网络数据的问题。正在开发的方法和软件提高了网络检测、估计和解释的准确性,具有广泛的应用。其中一个这样的应用是基因组研究,它为更好地预防、诊断和治疗疾病带来了巨大的希望。该项目的网络分析方法可以揭示更准确的因果路径结构和系统功能,这反过来又可以更好地理解潜在的生物机制。该项目还为从事高维数据研究的下一代统计学家提供了培训机会。具体地说,该项目研究了在多变量数据分析中替代传统高斯模型的灵活选择。这样的数据可能是有偏抽样的,也可能包括许多离散变量,这使得数据本质上是非高斯分布的。本项目研究的半参数优势比模型统一和扩展了连续数据的高斯模型和分类数据的对数线性模型。这种方法不仅对具有高度可解释的模型参数的复杂关联进行建模,而且还自然地解决了生物医学数据收集中经常遇到的有偏抽样设计的问题。惩罚似然方法可以一致地检测混合的连续变量和离散变量(即具有混合节点的稀疏关联网络)之间的稀疏关联。将开发用于一致性稀疏网络检测的新理论和实现这些方法的算法。与传统的关联网络检测的高斯模型相比,所研究的方法具有检测变量组之间的稀疏关联的优点,而不需要对高维环境下变量组内的关联进行建模。研究成果可以大大提高从高维数据中提取信息和解释此类信息的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hua Yun Chen其他文献

Ex vivo immunotherapy for patients with benzene-induced aplastic anemia.
苯诱发的再生障碍性贫血患者的离体免疫治疗。
Fatal Falls in the US Construction Industry, 1990 to 1999
1990 年至 1999 年美国建筑业的致命衰退

Hua Yun Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hua Yun Chen', 18)}}的其他基金

Generalized semiparametric odds ratio models
广义半参数优势比模型
  • 批准号:
    1007726
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Comparative analysis of sensor noise for target detection in dragonfly eyes
蜻蜓眼睛目标检测传感器噪声对比分析
  • 批准号:
    DP240101673
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Projects
D-ISN/Collaborative Research: Machine Learning to Improve Detection and Traceability of Forest Products using Stable Isotope Ratio Analysis (SIRA)
D-ISN/合作研究:利用稳定同位素比率分析 (SIRA) 提高林产品检测和可追溯性的机器学习
  • 批准号:
    2240403
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ATD: An Edge-Based PDE Paradigm and Inverse Analysis for Spatiotemporal Information Diffusion and Threat Detection
ATD:时空信息扩散和威胁检测的基于边缘的偏微分方程范式和逆分析
  • 批准号:
    2220373
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Advanced Raman Spectroscopy for Exhaled Breath Analysis for Lung Cancer Detection
用于肺癌检测的呼出气体分析的先进拉曼光谱
  • 批准号:
    494958
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Operating Grants
Analysis Solution to Improve Fault Detection on Mechanical Assembly Production Lines
改善机械装配生产线故障检测的分析解决方案
  • 批准号:
    10073325
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative R&D
Carcinogenic mechanism analysis and establishment new method at early detection of ovarian cancer
卵巢癌致癌机制分析及早期检测新方法的建立
  • 批准号:
    23K08809
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CosmoPort - Using cosmic rays for better, more portable and efficient analysis and detection for customs
CosmoPort - 使用宇宙射线为海关提供更好、更便携、更高效的分析和检测
  • 批准号:
    10102097
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    EU-Funded
Proof-of-Principle of Operando Hydrogen Microscopy using Micro-He Beam Transmission Elastic Recoil Detection Analysis
使用微氦光束传输弹性反冲检测分析进行原位氢显微镜原理验证
  • 批准号:
    23K17873
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
A study of super-parallel data analysis method for CMB polarimetric observations to improve the sensitivity of inflation detection
CMB极化观测超并行数据分析方法提高暴胀检测灵敏度的研究
  • 批准号:
    23KJ1602
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Detection of interspecific hybridization by eDNA analysis
通过 eDNA 分析检测种间杂交
  • 批准号:
    23H02556
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了