Inference of Network Structure from Grouped Data

从分组数据推断网络结构

基本信息

  • 批准号:
    1513004
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Networks, which can be viewed as data structures consisting of nodes (vertices) connected by links (edges), have drawn wide attention in a variety of scientific and engineering areas. The applications include friendship and collaboration networks in social sciences, food webs and gene regulatory networks in biology, network games in economics, the Internet and World Wide Web in computer science, as well as many others. Traditionally, statistical network analysis focuses on modeling explicit network structure. For physical networks, like power grids, links between nodes are well defined and can usually be directly observed. By contrast, explicit network structure may not be observable in other fields, especially in social sciences and biology. In these areas, the raw data available is usually behavior of nodes, which is generally presumed to be the result of latent network structure. This project will study the problem of reconstructing implicit networks from a special data structure--grouped data. Each observation of such data is a group of individuals which are observed to appear together. The project is composed of three parts, all concerning rigorous statistical methods for network inference from grouped data. The first part focuses on networks with continuous edge weights. The PI considers two intriguing properties -- self-sparsity and identifiability of Star Model (recently introduced by the PI and his PhD student), and proposes L1 regularization and low-rank matrix factorization in order to reduce the complexity of this model. In the second part, networks with binary links are considered. The PI proposes to study two different methods to estimate the network structures, including a global model based on Erdos-Renyi process and a non-parametric criterion based on subgraph densities. In the third part, the PI considers dependency structure among groups. The Markov property is assumed here, that is, a group generated at any time point only depends on the group structure at the previous time point and the latent network. The PI proposes an intuitive In-and-Out Model under the Markov assumption. The contribution of this project is twofold. Firstly, it is expected that the concept of implicit networks and the study of network inference from grouped data will change some fundamental viewpoints of statistical network analysis. Secondly, the rigorous statistical methods proposed in this project bring new challenging theoretical and computational questions, which will significantly advance the theoretical understanding and computational techniques in this area.
网络可以被看作是由链接(边)连接的节点(顶点)组成的数据结构,在各种科学和工程领域引起了广泛的关注。这些应用包括社会科学领域的友谊和合作网络、生物学领域的食物网和基因调控网络、经济学领域的网络游戏、计算机科学领域的互联网和万维网等。传统上,统计网络分析侧重于对显式网络结构建模。对于物理网络,如电网,节点之间的连接是明确定义的,通常可以直接观察到。相比之下,在其他领域,特别是在社会科学和生物学领域,可能无法观察到明确的网络结构。在这些领域中,可用的原始数据通常是节点的行为,这通常被认为是潜在网络结构的结果。本项目将研究从一种特殊的数据结构——分组数据重构隐式网络的问题。对这些数据的每次观察都是一组被观察到一起出现的个体。该项目由三个部分组成,都涉及从分组数据中进行网络推断的严格统计方法。第一部分主要研究具有连续边权的网络。PI考虑了两个有趣的特性——自稀疏性和可识别性(最近由PI和他的博士生引入),并提出了L1正则化和低秩矩阵分解以降低该模型的复杂性。在第二部分中,考虑了二元链路网络。PI提出了两种不同的网络结构估计方法,包括基于Erdos-Renyi过程的全局模型和基于子图密度的非参数准则。在第三部分,PI考虑了群体之间的依赖结构。这里假设马尔可夫性质,即在任何时间点生成的群只取决于前一个时间点的群结构和潜在网络。在马尔可夫假设下,PI提出了一种直观的输入和输出模型。这个项目的贡献是双重的。首先,隐式网络的概念和分组数据网络推理的研究将改变统计网络分析的一些基本观点。其次,本项目提出的严谨的统计方法带来了新的具有挑战性的理论和计算问题,这将大大促进该领域的理论认识和计算技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yunpeng Zhao其他文献

Metagenomic insights into functional traits variation and coupling effects on the anammox community during reactor start-up
反应器启动过程中厌氧氨氧化群落功能性状变化和耦合效应的宏基因组见解
  • DOI:
    10.1016/j.scitotenv.2019.05.491
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Yunpeng Zhao;Bo Jiang;Xi Tang;Sitong Liu
  • 通讯作者:
    Sitong Liu
Application of mesoporous ZSM-5 as a support for Fischer–Tropsch cobalt catalysts
介孔ZSM-5作为费托钴催化剂载体的应用
  • DOI:
    10.1007/s10934-014-9901-9
  • 发表时间:
    2015-04
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Weiming Zhao;Zhuo Li;Hui Wang;Jinhu Wu;Min Li;Zhiping Hu;Yongshen Wang;Jun Huang;Yunpeng Zhao
  • 通讯作者:
    Yunpeng Zhao
Integrative weighted group lasso and generalized local quadratic approximation
积分加权群套索和广义局部二次近似
A continuous-time diffusion model for inferring multi-layer diffusion networks
用于推断多层扩散网络的连续时间扩散模型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunpeng Zhao;Xiaopeng Yao;Hejiao Huang
  • 通讯作者:
    Hejiao Huang
A novel neural network model considering cyclic loading condition for low-cycle fatigue life prediction
一种考虑循环加载条件用于低周疲劳寿命预测的新型神经网络模型
  • DOI:
    10.1016/j.ijfatigue.2025.108943
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Hongguang Zhou;Ziming Wang;Yunpeng Zhao;Congjie Kang;Xiaohui Yu
  • 通讯作者:
    Xiaohui Yu

Yunpeng Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yunpeng Zhao', 18)}}的其他基金

Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
  • 批准号:
    2245380
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
  • 批准号:
    2401020
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Inference of Network Structure from Grouped Data
从分组数据推断网络结构
  • 批准号:
    1840203
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似国自然基金

多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
  • 批准号:
    91418205
  • 批准年份:
    2014
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Variable Structure Complex Network Systems with Smart Grid Applications
具有智能电网应用的变结构复杂网络系统
  • 批准号:
    DP240100830
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Projects
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
  • 批准号:
    2343387
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Reveal of thermal transport in disordered materials with local order and hierarchical structure by topological and network approaches
通过拓扑和网络方法揭示具有局部有序和分层结构的无序材料中的热传输
  • 批准号:
    23H01360
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Innovative In-Sensor Computing Devices Using Random Network Structure Reservoirs
使用随机网络结构储层的创新传感器内计算设备
  • 批准号:
    23K17864
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Technology to capture latent relationships using network structure and its applications
利用网络结构捕获潜在关系的技术及其应用
  • 批准号:
    23K01632
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Epileptogenic Changes in Local Network Structure Following Injury (Project 2)
损伤后局部网络结构的致癫痫变化(项目 2)
  • 批准号:
    10713245
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
Collaborative Research: HNDS-R: SBP: RUI: Differences in Co-authorship across a Global Landscape: The Role of Network Structure in Scientific Productivity
合作研究:HNDS-R:SBP:RUI:全球格局中共同作者的差异:网络结构在科学生产力中的作用
  • 批准号:
    2318425
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Elements: A Deep Neural Network-based Drone (UAS) Sensing System for 3D Crop Structure Assessment
Elements:用于 3D 作物结构评估的基于深度神经网络的无人机 (UAS) 传感系统
  • 批准号:
    2334690
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Change Point Detection for Data with Network Structure
网络结构数据变点检测
  • 批准号:
    2348640
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Deciphering and Overcoming CDK4/6 Inhibitor Resistance Mechanisms Using Network Structure Theory
利用网络结构理论破译和克服 CDK4/6 抑制剂耐药机制
  • 批准号:
    23K14156
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了