CSR: Medium: Collaborative Research: SparseKaffe: high-performance, auto-tuned, energy-aware algorithms for sparse direct methods on modern heterogeneous architectures
CSR:媒介:协作研究:SparseKaffe:现代异构架构上稀疏直接方法的高性能、自动调整、能量感知算法
基本信息
- 批准号:1514116
- 负责人:
- 金额:$ 39.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The use of sparse direct methods in computational science is ubiquitous. Direct methods can be used to find solutions to many numerical algebra applications, including sparse linear systems, sparse linear least squares, and eigenvalue problems; consequently they form the backbone of a broad spectrum of large scale applications. In the widely used and actively growing University of Florida Sparse Matrix Collection, there are problems from structural engineering, computational fluid dynamics (CFD), computer graphics/vision, robotics/kinematics, theoretical and quantum chemistry, power networks, social networks, document networks, among others. The SparseKaffe project team will develop algorithms and software for high-performance parallel sparse direct methods with irregular and hierarchical structure that can exploit clusters of Hybrid Multicore Processors to achieve orders of magnitude gains in computational performance, while also paying careful attention to the energy requirements. This requires the development of novel and innovative algorithms for scheduling, energy minimization, and memory management; development of novel user-guided autotuning algorithms that exploit different hardware characteristics; and designing a common infrastructure for creating auto-tuned software. The use of sparse direct methods is extensive, with many of the relevant science and engineering application areas being pushed to run at ever higher scales. The team expects SparseKaffe solvers to be able deliver not only high performance to the applications that use them, but also the energy efficiency that they will increasingly demand. The team will also create a course, and a corresponding set of course modules, to teach students how to develop algorithms and software that deliver orders of magnitude gains in performance on clusters of hybrid multicore processors.
稀疏直接方法在计算科学中的应用是无处不在的。直接方法可用于求解许多数值代数应用,包括稀疏线性系统、稀疏线性最小二乘和特征值问题;因此,它们构成了广泛的大规模应用的骨干。在广泛使用和积极发展的佛罗里达大学稀疏矩阵集合中,有来自结构工程、计算流体动力学(CFD)、计算机图形学/视觉、机器人/运动学、理论和量子化学、电力网络、社会网络、文档网络等方面的问题。SparseKaffe项目团队将开发具有不规则和分层结构的高性能并行稀疏直接方法的算法和软件,可以利用混合多核处理器集群实现计算性能的数量级提升,同时也要注意能量需求。这需要开发新颖的、创新的调度、能量最小化和内存管理算法;开发新的用户导向自动调谐算法,利用不同的硬件特性;并设计用于创建自动调优软件的通用基础设施。稀疏直接方法的应用非常广泛,许多相关的科学和工程应用领域都被推向了更高的尺度。该团队希望SparseKaffe求解器不仅能够为使用它们的应用程序提供高性能,而且还能够满足它们日益增长的能源效率需求。该团队还将开设一门课程,以及一套相应的课程模块,教学生如何开发算法和软件,从而在混合多核处理器集群上实现数量级的性能提升。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjay Ranka其他文献
The Temporal Relationship Between Ecological Pain and Life-Space Mobility in Older Adults With Knee Osteoarthritis: A Smartwatch-Based Demonstration Study (Preprint)
患有膝骨关节炎的老年人的生态疼痛与生活空间流动性之间的时间关系:基于智能手表的演示研究(预印本)
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Mardini;Subhash Nerella;Matin Kheirkhahan;Sanjay Ranka;R. Fillingim;Yujie Hu;D. Corbett;Erta Cenko;E. Weber;Parisa Rashidi;T. Manini - 通讯作者:
T. Manini
A comparison of different message-passing paradigms for the parallelization of two irregular applications
- DOI:
10.1007/bf00128099 - 发表时间:
1996-01-01 - 期刊:
- 影响因子:2.700
- 作者:
Seungjo Bae;Sanjay Ranka - 通讯作者:
Sanjay Ranka
Gene expression Markers improve clustering of CGH data
基因表达标记改善 CGH 数据的聚类
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Jun Liu;Sanjay Ranka;Tamer Kahveci - 通讯作者:
Tamer Kahveci
Hybrid Approaches for Data Reduction of Spatiotemporal Scientific Applications
时空科学应用数据缩减的混合方法
- DOI:
10.1109/dcc58796.2024.00084 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xiao Li;Qian Gong;Jaemoon Lee;S. Klasky;A. Rangarajan;Sanjay Ranka - 通讯作者:
Sanjay Ranka
Error-Bounded Learned Scientific Data Compression with Preservation of Derived Quantities
保留导出量的误差有限的学习科学数据压缩
- DOI:
10.3390/app12136718 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jaemoon Lee;Qian Gong;J. Choi;Tania Banerjee;S. Klasky;Sanjay Ranka;A. Rangarajan - 通讯作者:
A. Rangarajan
Sanjay Ranka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjay Ranka', 18)}}的其他基金
SCC: Video Based Machine Learning for Smart Traffic Analysis and Management
SCC:基于视频的机器学习,用于智能流量分析和管理
- 批准号:
1922782 - 财政年份:2019
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
EAGER: Software-Hardware Co-Design Approaches for Multi-Level Memories
EAGER:多级存储器的软硬件协同设计方法
- 批准号:
1748652 - 财政年份:2017
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
Student Travel Sponsorship for Third ACM BCB Conference, 2012
2012 年第三届 ACM BCB 会议学生旅行赞助
- 批准号:
1244794 - 财政年份:2012
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
Sparse Direct Methods on High-Performance Heterogeneous Architectures
高性能异构架构的稀疏直接方法
- 批准号:
1115297 - 财政年份:2011
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
CSR: Medium: Collaborative Research: GridPac: A Resource Management System for Energy and Performance Optimization on Computational Grids
CSR:媒介:协作研究:GridPac:计算网格能源和性能优化的资源管理系统
- 批准号:
0905308 - 财政年份:2009
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
MCDA: Collaborative Research: A Multi-Element and Multi-Objective Optimization Approach for Allocating tasks to Multi-Core Processors
MCDA:协作研究:一种将任务分配给多核处理器的多元素和多目标优化方法
- 批准号:
0903430 - 财政年份:2009
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
MRI: Acquisition of CASTOR: A High-Performance Communication and Storage Backbone for Data-Intensive Science and Engineering Computing
MRI:收购 CASTOR:用于数据密集型科学和工程计算的高性能通信和存储骨干
- 批准号:
0421200 - 财政年份:2004
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
ITR: Collaborative Research: A Data Mining and Exploration Middleware for Grid and Distributed Computing
ITR:协作研究:用于网格和分布式计算的数据挖掘和探索中间件
- 批准号:
0325459 - 财政年份:2003
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
CISE Educational Innovation Program: Mainstreaming Parallel and Distributed Computing in the Computer Science Undergraduate Curriculum
CISE 教育创新计划:将并行和分布式计算纳入计算机科学本科课程的主流
- 批准号:
9634470 - 财政年份:1996
- 资助金额:
$ 39.55万 - 项目类别:
Standard Grant
Performance Modeling of SIMD and MIMD Parallel Computers using Neural Networks
使用神经网络对 SIMD 和 MIMD 并行计算机进行性能建模
- 批准号:
9110812 - 财政年份:1991
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
- 批准号:
2312206 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Architecting GPUs for Practical Homomorphic Encryption-based Computing
协作研究:CSR:中:为实用的同态加密计算构建 GPU
- 批准号:
2312276 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
- 批准号:
2312689 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
- 批准号:
2401244 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
- 批准号:
2312207 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Adaptive Environmental Awareness for Collaborative Augmented Reality
协作研究:企业社会责任:媒介:协作增强现实的自适应环境意识
- 批准号:
2312760 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Core: Medium: Scaling Unix/Linux Shell Programs
协作研究:CSR:核心:中:扩展 Unix/Linux Shell 程序
- 批准号:
2312346 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: MemDrive: Memory-Driven Full-Stack Collaboration for Autonomous Embedded Systems
协作研究:CSR:媒介:MemDrive:自主嵌入式系统的内存驱动全栈协作
- 批准号:
2312397 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: MemDrive: Memory-Driven Full-Stack Collaboration for Autonomous Embedded Systems
协作研究:CSR:媒介:MemDrive:自主嵌入式系统的内存驱动全栈协作
- 批准号:
2312396 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Adaptive Environmental Awareness for Collaborative Augmented Reality
协作研究:企业社会责任:媒介:协作增强现实的自适应环境意识
- 批准号:
2312761 - 财政年份:2023
- 资助金额:
$ 39.55万 - 项目类别:
Continuing Grant














{{item.name}}会员




