EAPSI:Quantifying Effects of Sensor Network Reliability on Modal Identification of a Five-Story Steel Structure

EAPSI:量化传感器网络可靠性对五层钢结构模态识别的影响

基本信息

  • 批准号:
    1515459
  • 负责人:
  • 金额:
    $ 0.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

Structural engineering researchers and practitioners invest an immense amount of time and money into reliable data acquisition systems with the ambition of obtaining up-to-date information about the true behavior of existing infrastructure. However, even state-of-the-art technologies are susceptible to missing packets, erroneous values, and other malfunctions. The finite reliability of sensors and data acquisition systems disrupts data-driven methods designed to extract important structural information. Furthermore, the likelihood of sensing failures and corresponding incomplete datasets increases during extreme weather events. This award supports research using large-scale experiments to discover the true impact of sensor network reliability on the estimation of important structural features of structural health. The work will be conducted under the mentorship of Professors Masayoshi Nakashima and Masahiro Kurata at the world-renown Disaster Prevention Research Institute at Kyoto University, Japan. The main hypothesis of this project is despite their missing content, there is a substantial amount of crucial features available within incomplete datasets. Without suitable processing methods, this data is often considered damaged beyond repair then partially or fully discarded, leaving important structural information unknown. Structural responses of a five-story steel frame will be measured using a data acquisition system with a low reliability. New techniques that accurately estimate structural modal properties using incomplete datasets will be proposed. Central analytical goals of this project will focus on location-based knowledge in these cases, e.g. the quantification of total spatial information in terms of total network reliability and individual sensor reliability. Consideration of this data class in large-scale structural tests is essential for the development and validation of new computational tools that extract maximal information using measured responses from existing infrastructure. The structural health monitoring methods that support incomplete datasets offer expedited post-event assessments of structural integrity, permitting prompt notification to engineers, local governments, and society. This NSF EAPSI award is funded in collaboration with the Japan Society for the Promotion of Science.
结构工程研究人员和从业人员投入大量的时间和金钱到可靠的数据采集系统中,以获得有关现有基础设施真实行为的最新信息。然而,即使是最先进的技术也容易受到丢失数据包、错误值和其他故障的影响。传感器和数据采集系统的有限可靠性破坏了旨在提取重要结构信息的数据驱动方法。此外,在极端天气事件期间,传感故障和相应的不完整数据集的可能性增加。该奖项支持使用大规模实验的研究,以发现传感器网络可靠性对结构健康的重要结构特征估计的真正影响。这项工作将在日本京都大学世界著名的防灾研究所的中岛正吉教授和仓田正弘教授的指导下进行。 该项目的主要假设是,尽管它们缺少内容,但在不完整的数据集中有大量的关键特征。如果没有合适的处理方法,这些数据通常被认为是损坏无法修复,然后部分或全部丢弃,留下重要的结构信息未知。采用可靠性较低的数据采集系统,对一个五层钢框架结构的结构响应进行了测试。将提出使用不完整数据集精确估计结构模态特性的新技术。在这些情况下,该项目的中心分析目标将集中在基于位置的知识上,例如,在总网络可靠性和单个传感器可靠性方面量化总空间信息。在大规模结构测试中考虑这类数据对于开发和验证新的计算工具至关重要,这些工具使用现有基础设施的测量响应提取最大信息。支持不完整数据集的结构健康监测方法提供了对结构完整性的快速事后评估,允许及时通知工程师,地方政府和社会。这个NSF EAPSI奖是与日本科学促进协会合作资助的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Matarazzo其他文献

Thomas Matarazzo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

COLLABORATIVE RESEARCH: Quantifying the effects of variable light and iron on the nitrate assimilation isotope effect of phytoplankton
合作研究:量化可变光和铁对浮游植物硝酸盐同化同位素效应的影响
  • 批准号:
    2333913
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantifying the thermal effects of fluid circulation in oceanic crust on temperatures in the southern Mexico subduction zone
合作研究:量化洋壳流体循环对墨西哥南部俯冲带温度的热效应
  • 批准号:
    2234705
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Quantifying the thermal effects of fluid circulation in oceanic crust on temperatures in the southern Mexico subduction zone
合作研究:量化洋壳流体循环对墨西哥南部俯冲带温度的热效应
  • 批准号:
    2234706
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Continuing Grant
Identifying and quantifying genetic effects on neurodevelopmental trajectories in adolescents
识别和量化遗传对青少年神经发育轨迹的影响
  • 批准号:
    10817321
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
Capturing, quantifying, and understanding combinatorial effects in small molecule signaling
捕获、量化和理解小分子信号传导中的组合效应
  • 批准号:
    10684528
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
Postdoctoral Fellowship: OCE-PRF: Quantifying the effects of ocean alkalinity enhancement on costal ecosystems and atmospheric carbon dioxide
博士后奖学金:OCE-PRF:量化海洋碱度增强对沿海生态系统和大气二氧化碳的影响
  • 批准号:
    2308400
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Quantifying the effects of variable light and iron on the nitrate assimilation isotope effect of phytoplankton
合作研究:量化可变光和铁对浮游植物硝酸盐同化同位素效应的影响
  • 批准号:
    2406821
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Standard Grant
Quantifying the Effects of Disorder and Lateral Interactions on Chemically Modified Carbon Electrodes: Molecular Insights to Rationally Design Electrochemical Performance
量化无序和横向相互作用对化学修饰碳电极的影响:合理设计电化学性能的分子洞察
  • 批准号:
    2305065
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Standard Grant
CAREER: Quantifying the Effects of Liquid Water Content on the Spectral Albedo of Snow
职业:量化液态水含量对雪光谱反照率的影响
  • 批准号:
    2144243
  • 财政年份:
    2022
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantifying the effects of Langmuir Turbulence on Sea Ice and The Arctic Ocean
合作研究:量化朗缪尔湍流对海冰和北冰洋的影响
  • 批准号:
    2146889
  • 财政年份:
    2022
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了