EAPSI: Addressing an Open Problem in Algebraic Statistics

EAPSI:解决代数统计中的一个开放问题

基本信息

  • 批准号:
    1515487
  • 负责人:
  • 金额:
    $ 0.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

Algebraic statistics is the branch of mathematics concerned with applying techniques and tools from algebra to problems in statistics. This project will be concerned with addressing an open problem in the field of algebraic statistics. The project will be conducted in collaboration with host Prof. Satoshi Kuriki, a renowned statistician, and Prof. Hisayuki Hara, an expert in the field of algebraic statistics, at The Institute of Statistical Mathematics in Tokyo, Japan. The goal of the project is to provide another tool for testing model/data fit for researchers and statisticians to use in applications.The problem to be addressed is the question of how to compute Markov bases for the multi-nomial logistic regression model. Multinomial logistic regression is used to model a categorical dependent variable that can take values in more than two categories in terms of a set of real- or categorically-valued independent variables. A Markov basis is an algebraic object associated to a statistical model that allows one to perform otherwise intractable statistical procedures, such as goodness-of-fit testing and parameter estimation. The goal of the project is to compute a Markov basis for the multinomial logistic regression model and to study its computational complexity. This NSF EAPSI award is funded in collaboration with the Japan Society for the Promotion of Science.
代数统计学是数学的一个分支,主要研究将代数中的技术和工具应用于统计问题。这个项目将关注于解决代数统计领域的一个公开问题。该项目将与日本东京统计数学研究所的著名统计学家Satoshi Kuriki教授和代数统计领域的专家Hisayuki Hara教授合作进行。该项目的目标是为研究人员和统计人员提供另一种用于测试模型/数据拟合的工具,以用于应用。要解决的问题是如何计算多项逻辑回归模型的马尔可夫基的问题。多项逻辑回归用于对分类因变量进行建模,该因变量可以根据一组真实的或分类值自变量在两个以上类别中取值。马尔可夫基是与统计模型相关联的代数对象,允许执行否则难以处理的统计过程,例如拟合优度测试和参数估计。该项目的目标是计算多项逻辑回归模型的马尔可夫基,并研究其计算复杂性。这个NSF EAPSI奖是与日本科学促进协会合作资助的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dane Wilburne其他文献

Random Numerical Semigroups and a Simplicial Complex of Irreducible Semigroups
随机数值半群和不可约半群的单纯复形

Dane Wilburne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Supply Chain Collaboration in addressing Grand Challenges: Socio-Technical Perspective
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 0.51万
  • 项目类别:
    EU-Funded
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
  • 批准号:
    ES/Z502789/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Research Grant
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
  • 批准号:
    EP/Y023250/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Research Grant
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
  • 批准号:
    MR/Y020200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Fellowship
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
  • 批准号:
    MR/S034420/2
  • 财政年份:
    2024
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Fellowship
A MISSING LINK between continental shelves and the deep sea: Addressing the overlooked role of land-detached submarine canyons
大陆架和深海之间缺失的联系:解决与陆地无关的海底峡谷被忽视的作用
  • 批准号:
    NE/X014975/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Research Grant
A study of in-school in-service training for HRTs and senka teachers, addressing teacher training needs.
针对 HRT 和 Senka 教师的校内在职培训研究,解决教师培训需求。
  • 批准号:
    24K04150
  • 财政年份:
    2024
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
  • 批准号:
    2336368
  • 财政年份:
    2024
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Standard Grant
CAREER: CAS-Climate: Addressing Climate Change Impacts on Urban Water Affordability
职业:CAS-气候:应对气候变化对城市水承受能力的影响
  • 批准号:
    2337668
  • 财政年份:
    2024
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Continuing Grant
S-STEM: Addressing Disparities in STEM Educational Access and Outcomes among Low-Income Students
S-STEM:解决低收入学生在 STEM 教育机会和成果方面的差异
  • 批准号:
    2322771
  • 财政年份:
    2024
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了