EAPSI: Investigating the Stability of Particles in Topological Phases of Matter

EAPSI:研究物质拓扑相中粒子的稳定性

基本信息

  • 批准号:
    1515557
  • 负责人:
  • 金额:
    $ 0.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

A fundamental challenge in science is to characterize states of matter. A phase of matter is a family of states of matter which have very uniform physical properties. Common phases include liquid, gas and solid, which are distinguished by varying temperature. In the 1980?s, scientist discovered new phases of matter in two dimensional electron gas structures, namely fractional quantum hall states. These states possessed particles with interesting statistical behavior, called anyons. In particular, an exchange of two anyons resulted in a multiplication of the state by a complex phase. These new states of matter belong to topologically ordered phases. This project investigates the conjecture that the structure of anyons is stable within a topological phase. This research will be conducted in collaboration with Dr. Yasuyuki Kawahigashi, professor in the Department of Mathematical Science at the University of Tokyo. Dr. Kawahigashi is an expert in the theory of operator algebras and their applications to mathematical physics. The collaboration allows us to further explore the operator algebraic perspective of topological phases and pursue rigorous results in the subject. This research will advance efforts to realize universal quantum computing.We begin by studying exactly solvable Hamiltonian lattice models, in the thermodynamic limit, for which the anyon structure is completely known. These models include Kitaev?s surface codes and Levin and Wen?s string-net models. Each anyon is related to a superselection sector of the algebra of observables. Analysis of the superselection sectors allows one to recover the complete anyon structure, including particle fusion and braiding. Under physically allowable perturbations, we will study the stability of the superselection sectors and particle fusion and braiding. The stability of anyons is the premise of a major program in fault-tolerant quantum computation, namely topological quantum computation. The results of this project form the basis for the continued search for a universal quantum computer through topologically ordered states. This NSF EAPSI award is funded in collaboration with the Japan Society for the Promotion of Science.
科学的一个基本挑战是表征物质的状态。 物质相是具有非常一致的物理性质的物质状态族。 常见的相包括液体、气体和固体,它们通过不同的温度来区分。 20 世纪 80 年代,科学家在二维电子气结构中发现了新的物质相,即分数量子霍尔态。 这些态拥有具有有趣统计行为的粒子,称为任意子。 特别是,两个任意子的交换导致状态乘以复相。 这些新的物质状态属于拓扑有序相。 该项目研究了任意子结构在拓扑相内稳定的猜想。 这项研究将与东京大学数学科学系教授 Yasuyuki Kawahigashi 博士合作进行。 Kawahigashi 博士是算子代数理论及其在数学物理中的应用方面的专家。 此次合作使我们能够进一步探索拓扑相的算子代数视角,并在该主题中追求严格的结果。 这项研究将推进实现通用量子计算的努力。我们首先研究在热力学极限下精确可解的哈密顿晶格模型,其中任意子结构是完全已知的。 这些模型包括 Kitaev 的表面编码以及 Levin 和 Wen 的弦网模型。 每个任意子都与可观测量代数的超选择扇区相关。 对超选择扇区的分析允许人们恢复完整的任意子结构,包括粒子融合和编织。 在物理允许的扰动下,我们将研究超选择扇区以及粒子融合和编织的稳定性。 任意子的稳定性是容错量子计算中一个重大方案——拓扑量子计算的前提。 该项目的结果构成了通过拓扑有序态继续寻找通用量子计算机的基础。 该 NSF EAPSI 奖项是与日本科学振兴会合作资助的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Cha其他文献

A quantum random walk model for the (1 + 2) dimensional Dirac equation
(1 2) 维狄拉克方程的量子随机游走模型
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Cha;D. Meyer
  • 通讯作者:
    D. Meyer
PIV Flow Field Measurement for Rotor Blade Cascade of a Variable Geometry Turbine
The complete set of in(cid:12)nite volume ground states for Kitaev’s abelian quantum double models
Kitaev 的阿贝尔量子双模型的完整 in(cid:12)nite 体积基态集
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Cha;Pieter Naaijkens;Bruno Nachtergaele
  • 通讯作者:
    Bruno Nachtergaele
A STUDY OF LAGRANGIAN FLUID ELEMENT BASED ON ABSOLUTE NODAL COORDINATE FORMULATION AND ITS APPLICATION IN LIQUID SLOSHING
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Cha
  • 通讯作者:
    Matthew Cha
The Complete Set of Infinite Volume Ground States for Kitaev’s Abelian Quantum Double Models
基塔耶夫阿贝尔量子双模型的无限体积基态的完整集合
  • DOI:
    10.1007/s00220-017-2989-4
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Matthew Cha;Pieter Naaijkens;B. Nachtergaele
  • 通讯作者:
    B. Nachtergaele

Matthew Cha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Investigating the stability of the inverse Brascamp-Lieb inequality
研究反 Brascamp-Lieb 不等式的稳定性
  • 批准号:
    23K25777
  • 财政年份:
    2024
  • 资助金额:
    $ 0.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Postdoctoral Fellowship: EAR-PF: To roll, flow, or fracture - that is the question: Investigating the mechanisms behind friction and the stability of faults
博士后奖学金:EAR-PF:滚动、流动或断裂 - 这就是问题:研究摩擦和断层稳定性背后的机制
  • 批准号:
    2305630
  • 财政年份:
    2024
  • 资助金额:
    $ 0.01万
  • 项目类别:
    Fellowship Award
Investigating the stability of the inverse Brascamp-Lieb inequality
研究反 Brascamp-Lieb 不等式的稳定性
  • 批准号:
    23H01080
  • 财政年份:
    2023
  • 资助金额:
    $ 0.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigating novel mechanisms of genetic stability at the replication fork
研究复制叉遗传稳定性的新机制
  • 批准号:
    MR/X019098/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.01万
  • 项目类别:
    Research Grant
CAREER: Just add water? Investigating RNA stability in desiccated soil bacteria.
职业:只加水吗?
  • 批准号:
    2141605
  • 财政年份:
    2022
  • 资助金额:
    $ 0.01万
  • 项目类别:
    Continuing Grant
Research Initiation Award: Investigating the Kinetics of Vitrification and Crystallization of Electrospun Nanofibrous Carrier for Improved Stability and Drug Loading Capacity
研究启动奖:研究电纺纳米纤维载体的玻璃化和结晶动力学,以提高稳定性和药物负载能力
  • 批准号:
    2200423
  • 财政年份:
    2022
  • 资助金额:
    $ 0.01万
  • 项目类别:
    Standard Grant
Investigating the role of arginine methylation as a critical regulator of DNA replication and genome stability
研究精氨酸甲基化作为 DNA 复制和基因组稳定性关键调节因子的作用
  • 批准号:
    MR/W001152/1
  • 财政年份:
    2022
  • 资助金额:
    $ 0.01万
  • 项目类别:
    Research Grant
Investigating the Causes of the Limited Electrical & Photo-Stability of Organic Optoelectronic and Photovoltaic Devices Fabricated by Wet-coating
调查电力有限的原因
  • 批准号:
    RGPIN-2019-04653
  • 财政年份:
    2022
  • 资助金额:
    $ 0.01万
  • 项目类别:
    Discovery Grants Program - Individual
Research Initiation Award: Investigating the Efficacy and Stability of Charred Nanocellulose Materials in High Temperature and High Performing Polymers
研究启动奖:研究烧焦纳米纤维素材料在高温高性能聚合物中的功效和稳定性
  • 批准号:
    2101209
  • 财政年份:
    2021
  • 资助金额:
    $ 0.01万
  • 项目类别:
    Standard Grant
Investigating sliding clamps and their contribution to genome stability
研究滑动夹及其对基因组稳定性的贡献
  • 批准号:
    10551232
  • 财政年份:
    2021
  • 资助金额:
    $ 0.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了