Micro-Plasmas Through Porous Media

通过多孔介质的微等离子体

基本信息

项目摘要

Porous media may be thought of as material that is essentially transparent to fluid flow (e.g. gas or liquid). The internal surface area of such materials is substantial, making the material excellent for chemical processing applications. Porous media play an important role in modern society with applications ranging from water filtration, such as activated charcoal filters, to air filtration. Indeed, a catalytic converter exploits porous media's high surface area to volume ratio to achieve high emission reduction efficiency in automobile exhausts. New and emerging applications of porous media include fuel cells and clean combustion. Porous media combustion in particular takes place in the pores. The energy released there elevates the medium temperature so that injected fuel automatically ignites upon entry. This technology has the potential to reduce auto emissions and significantly increase fuel efficiency by enabling very lean fuel burns. The introduction of small amounts of ionized gas, a micro-plasma, inside the pores can further reduce ignition temperature thereby allowing for further increases in efficiency. Additionally, reactive micro-plasmas produced in the pores have the potential to decompose toxic combustion byproducts as well as to clean the pores to greatly improve service lifetime. Currently, the micro-plasma production in porous media is not well understood. This effort aims to improve the understanding and optimize the production of micro-plasmas in porous media by using a combination of experiments and simulations. The goal of the effort is to bridge the gap between scientific understanding of plasma production in porous media and actual applications. The understanding obtained from this effort contributes to the development and realization of clean burning, highly efficient, low emission automobiles, advanced fuel cells and advanced industrial smoke stack scrubbers. A fundamental understanding of the physical conditions that lead to interconnected plasma propagation from pore to pore is necessary before one can credibly control and thus exploit micro-plasmas in porous media (MPPM). We expect that a combination of diffusive transport between pores and plasma avalanche within the pores, augmented by surface charging and radiation transport, play key roles in establishing plasma interconnectivity between adjacent pores. However there is now little experimental or theoretical confirmation of these or other theories. In this research project, we will investigate the basic properties of atmospheric pressure plasmas propagating into and through porous media in chemically reacting environments. The goals are to improve our understanding of plasma-surface interactions, which lead to MPPM, through a collaborative investigation combining comprehensive experimental measurements and first-principles, fluid, hybrid and kinetic modeling. Two configurations will be studied. The first is a structured porous material represented by a pack-bed reactor consisting of dielectric beads or rods having a controlled radius, permittivity, conductivity and layout placed between metal electrodes. The second configuration will be a truly randomly structured porous material, ceramic and/or metal foam, as is commercially available. The project also includes a K-12 outreach effort targeting low-income students. The effort aims to introduce the students to plasma science and the emerging field of plasma-aided combustion through both hands on experiments and science lesson modules.
多孔介质可以被认为是对流体流(例如气体或液体)基本上透明的材料。 这种材料的内表面积很大,使得该材料非常适合化学加工应用。多孔介质在现代社会中发挥着重要作用,其应用范围从水过滤(如活性炭过滤器)到空气过滤。实际上,催化转化器利用多孔介质的高表面积与体积比来实现汽车废气的高减排效率。 多孔介质的新兴应用包括燃料电池和清洁燃烧。 多孔介质燃烧特别地发生在孔隙中。在那里释放的能量提高了介质温度,因此喷射的燃料在进入时自动点燃。这项技术有可能减少汽车排放,并通过实现非常稀薄的燃料燃烧来显着提高燃油效率。 在孔内引入少量的电离气体(微等离子体)可以进一步降低点火温度,从而允许进一步提高效率。此外,在孔隙中产生的反应性微等离子体具有分解有毒燃烧副产物以及清洁孔隙以大大提高使用寿命的潜力。 目前,多孔介质中微等离子体的产生还没有得到很好的理解。 这项工作的目的是提高理解和优化生产的微等离子体在多孔介质中使用的实验和模拟相结合。 这项工作的目标是弥合多孔介质中等离子体产生的科学理解与实际应用之间的差距。从这一努力中获得的理解有助于开发和实现清洁燃烧、高效、低排放的汽车、先进的燃料电池和先进的工业烟囱洗涤器。 一个基本的物理条件,导致互连等离子体从孔到孔的传播的理解是必要的,才可以合理地控制,从而利用多孔介质中的微等离子体(MPPM)。 我们预计,孔隙和等离子体雪崩的孔隙内,表面充电和辐射传输增强之间的扩散运输的组合,在建立相邻的孔隙之间的等离子体互连发挥关键作用。 然而,现在几乎没有实验或理论证实这些或其他理论。 在本研究计画中,我们将探讨在化学反应环境中,大气压电浆在多孔介质中传播的基本特性。 我们的目标是提高我们对等离子体表面相互作用的理解,这导致MPPM,通过综合实验测量和第一原理,流体,混合动力学建模相结合的合作调查。 将研究两种配置。 第一种是由填充床反应器表示的结构化多孔材料,该填充床反应器由具有受控半径、介电常数、电导率和布置的电介质珠或棒组成,该电介质珠或棒放置在金属电极之间。 第二种结构将是真正随机结构的多孔材料,陶瓷和/或金属泡沫,如市售的。 该项目还包括针对低收入学生的K-12外联工作。这项工作的目的是向学生介绍等离子体科学和等离子体辅助燃烧的新兴领域,通过实验和科学课程模块的手。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Foster其他文献

THE IMPORTANCE OF LECTURE IN GENERAL CHEMISTRY COURSE PERFORMANCE
普通化学课程表现中讲座的重要性
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Birk;John Foster
  • 通讯作者:
    John Foster
FRI277 - Accumulation of molybdenum in major organs following chronic oral administration of bis-choline tetrathiomolybdate in Sprague Dawley rats
FRI277 - 斯普拉格·道利大鼠慢性口服二胆碱四硫代钼酸盐后主要器官中钼的积累
  • DOI:
    10.1016/s0168-8278(22)01383-6
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
    33.000
  • 作者:
    Kharmen Billimoria;Timothy Morley;Maria Estela del Castillo;Stanislav Stekopytov;Heidi Goenaga-Infante;John Foster
  • 通讯作者:
    John Foster
Innovation, Complexity and Economic Evolution: From Theory to Policy, by Pier Paolo Saviotti, Routledge, 282 pages
  • DOI:
    10.1007/s00191-023-00839-1
  • 发表时间:
    2023-09-19
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    John Foster
  • 通讯作者:
    John Foster
Molecular models for the do-it-yourselfer
适合DIY爱好者的分子模型
  • DOI:
  • 发表时间:
    1989
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Birk;John Foster
  • 通讯作者:
    John Foster
TO BE OR NOT TO BE: A CASE OF RECURRENT SWELLING SYNDROME OF THE THORACIC DUCT
  • DOI:
    10.1016/s0735-1097(20)33802-x
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
  • 作者:
    Ayesha Azmeen;Ayesha Shaik;John McArdle;John Foster
  • 通讯作者:
    John Foster

John Foster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Foster', 18)}}的其他基金

ECLIPSE: CAS-Climate: Understanding the Role of Thermally-Driven Processes in Pattern Formation and Droplet Emission in DC Glows with Applications to Water Treatment
ECLIPSE:CAS-气候:了解热驱动过程在直流辉光中图案形成和液滴发射中的作用及其在水处理中的应用
  • 批准号:
    2206039
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
FMitF: Track 2: Formal Reasoning for Legal Conveyances
FMitF:轨道 2:法律转让的形式推理
  • 批准号:
    2019313
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
FMitF: Track I: Petr4: Formal Foundations for Programmable Networks
FMITF:第一轨:Petr4:可编程网络的正式基础
  • 批准号:
    1918396
  • 财政年份:
    2019
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Travel Support: 15th US National Congress on Computational Mechanics (USNCCM XV); Austin, Texas; July 28-August 1, 2019
差旅支持:第十五届美国计算力学全国大会(USNCCM XV);
  • 批准号:
    1935320
  • 财政年份:
    2019
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
IUCRC Phase I: The University of Michigan Center for High Pressure Plasma Energy, Agriculture, and Biomedical Technologies (PEAB)
IUCRC 第一阶段:密歇根大学高压等离子体能源、农业和生物医学技术中心 (PEAB)
  • 批准号:
    1747739
  • 财政年份:
    2018
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Planning I/UCRC University of Michigan Ann Arbor: Center for High Pressure Plasma Energy, Agriculture, and Biomedical Technologies (PEAB)
规划 I/UCRC 密歇根大学安娜堡分校:高压等离子体能源、农业和生物医学技术中心 (PEAB)
  • 批准号:
    1650488
  • 财政年份:
    2017
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: A New Approach to Federated Network Security
SaTC:核心:小型:协作:联合网络安全的新方法
  • 批准号:
    1717581
  • 财政年份:
    2017
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
CICI: Secure and Resilient Architecture: Campus Infrastructure for Microscale, Privacy-Conscious, Data-Driven Planning
CICI:安全和弹性架构:用于微型、隐私意识、数据驱动规划的园区基础设施
  • 批准号:
    1642120
  • 财政年份:
    2017
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: High Throughput Plasma Water Purifier
PFI:AIR - TT:高通量等离子净水器
  • 批准号:
    1700848
  • 财政年份:
    2017
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
AitF: Theory and Practice of Probabilistic Network Programming
AitF:概率网络规划的理论与实践
  • 批准号:
    1637532
  • 财政年份:
    2016
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant

相似海外基金

Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
  • 批准号:
    2409316
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Microscale radiography of hydrodynamic instabilities mitigation in magnetized high-density laser plasmas
磁化高密度激光等离子体中流体动力学不稳定性缓解的微尺度射线照相
  • 批准号:
    24K06988
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: Low-Temperature Plasmas for Synthesis of Diamond Nanoparticles
EAGER:用于合成金刚石纳米粒子的低温等离子体
  • 批准号:
    2333452
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Comprehensive numerical analysis of ICRF heating with fast-ion-driven instabilities in toroidal plasmas
对环形等离子体中快速离子驱动不稳定性的 ICRF 加热进行全面数值分析
  • 批准号:
    24K17032
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Electron-molecule collisions in fusion and astrophysical plasmas
聚变和天体物理等离子体中的电子-分子碰撞
  • 批准号:
    DP240101184
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Discovery Projects
Studies for radiation and paticle motion controls beased on velocity fields measurements of laser-produced plasmas
基于激光等离子体速度场测量的辐射和粒子运动控制研究
  • 批准号:
    23H01147
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on topological constraints that characterize the vortex structure of plasmas
表征等离子体涡旋结构的拓扑约束研究
  • 批准号:
    23KJ0435
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2404521
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Turbulence, Shocks, and Stability in Fluids and Plasmas
流体和等离子体中的湍流、冲击和稳定性
  • 批准号:
    2307357
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Energy Conversion Beyond the First Law of Thermodynamics in Non-Equilibrium Plasmas
合作研究:非平衡等离子体中超越热力学第一定律的能量转换
  • 批准号:
    2308669
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了