Collaborative Research: RAPID: Computationally designed probes to experimentally characterize mechanisms of Ebola virus membrane fusion
合作研究:RAPID:计算设计的探针,用于实验表征埃博拉病毒膜融合机制
基本信息
- 批准号:1521547
- 负责人:
- 金额:$ 6.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-15 至 2017-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lay AbstractThe 2014 Ebola epidemic is the largest outbreak in history (http://www.cdc.gov) and according to the World Health Organization (WHO), "There have been 9936 Ebola virus disease cases, and 4877 deaths, up to the end of 19 October." Just as alarming are the recent reports of Ebola transmission to hospital caregivers despite official warning to the contrary that spread would likely not be an issue in more developed countries such as the United States. Together, these unprecedented events highlight the severity of the potential of Ebola virus to become pandemic and the urgent need to more fully characterize how the virus replicates so that steps can be made to stop the current and likely future outbreaks. This project employs atomic-level computer modeling (docking, virtual screening) to predict and characterize how small molecule compound probes bind to and interact with specific viral proteins located on the surface of the Ebola virus. Top-scoring compounds will be experimentally tested to determine which molecules can stop viral entry. Characterization of how small molecules interact with Ebola proteins will ultimately enable a better understanding of how viral entry can be stopped and Ebola infection controlled. This will also be important for the study of other enveloped viruses such as influenza, HIV, SARS, MERS, among others. Broader impacts of the work include increased knowledge as to what types of molecules are most effective at stopping Ebola infection which will benefit study of related enveloped viruses and targeting of similar viral entry events mediated by analogous viral proteins. An important component of the project is educational training in use of cutting-edge computational and experimental tools for viral research at the undergraduate, graduate, and postdoctoral levels that includes the planned participation of women and underrepresented minorities. Technical AbstractThe PI will conduct computational and experimental studies to identify and design small molecular probes that will arrest early membrane fusion events necessary for the life cycle of the virus. The project will employ a powerful new computational docking strategy that allows putative binding interfaces, such as those on Ebola viral entry proteins GP2 and GP1, to be mapped and exploited at the atomic level. Specifically, computational footprinting methods employing per-residue interaction energies will be used to identify targetable events in the Ebola pre-hairpin and pre-fusion models followed by docking to identify the most promising top-scoring compounds for additional in-depth characterization and experimental testing. The goal is to identify compounds that target favorable positions for disruption of N-helical coil formation and C-helix association, using large-scale high-throughput-virtual screening of commercially available compounds and experimental testing. An experimental pseudotyped virus system that uses a quantitative reporter gene in a non-replicating virus-like particle containing Ebola virus envelope proteins GP2 and GP1 will be used to confirm that compounds from the virtual screen arrest viral entry/fusion. Such compounds will be prioritized for additional study and development. Broader impacts of the work include increased knowledge as to what types of compounds are most effective at stopping Ebola infection which may both lead to development of Ebola virus-targeted therapeutics and also benefit study of related enveloped viruses and targeting of similar viral entry events mediated by analogous viral proteins. The project will also educate undergraduate, graduate, and postdoctoral students in the use and analysis of innovative computational docking and experimental biophysical methods to help prepare the next generation of scientists to attack important research problems in the future.
2014年埃博拉疫情是历史上最大的爆发(http:www.cdc.gov),根据世界卫生组织(WHO),“截至10月19日,已有9936例埃博拉病毒病病例,4877人死亡。“同样令人震惊的是,最近有报告称,埃博拉病毒传播给医院护理人员,尽管官方警告说,在美国等较发达国家,传播可能不是一个问题。 总之,这些前所未有的事件突出了埃博拉病毒成为大流行病的可能性的严重性,以及更全面地描述病毒如何复制的迫切需要,以便采取措施阻止当前和未来可能的爆发。 该项目采用原子级计算机建模(对接,虚拟筛选)来预测和表征小分子化合物探针如何与位于埃博拉病毒表面的特定病毒蛋白结合并相互作用。 得分最高的化合物将进行实验测试,以确定哪些分子可以阻止病毒进入。 小分子如何与埃博拉蛋白相互作用的表征将最终使人们能够更好地了解如何阻止病毒进入并控制埃博拉感染。 这对其他包膜病毒如流感、HIV、SARS、MERS等的研究也很重要。 这项工作的更广泛影响包括增加了关于什么类型的分子在阻止埃博拉感染方面最有效的知识,这将有利于研究相关的包膜病毒和靶向由类似病毒蛋白介导的类似病毒进入事件。 该项目的一个重要组成部分是在本科生、研究生和博士后水平上进行关于使用尖端计算和实验工具进行病毒研究的教育培训,其中包括妇女和代表性不足的少数民族的计划参与。 技术摘要PI将进行计算和实验研究,以确定和设计小分子探针,将逮捕病毒的生命周期所必需的早期膜融合事件。 该项目将采用一种强大的新计算对接策略,允许在原子水平上绘制和利用推定的结合界面,例如埃博拉病毒进入蛋白GP 2和GP 1上的结合界面。 具体而言,采用每残基相互作用能的计算足迹方法将用于识别埃博拉前发夹和融合前模型中的靶向事件,然后进行对接以识别最有希望的得分最高的化合物,以进行额外的深入表征和实验测试。 我们的目标是确定目标的有利位置的N-螺旋线圈的形成和C-螺旋协会的破坏的化合物,使用大规模的高通量-虚拟筛选的市售化合物和实验测试。 将使用在含有埃博拉病毒包膜蛋白GP 2和GP 1的非复制病毒样颗粒中使用定量报告基因的实验假型病毒系统来确认来自虚拟筛选的化合物阻止病毒进入/融合。 这些化合物将优先进行进一步的研究和开发。 这项工作的更广泛影响包括增加了关于什么类型的化合物在阻止埃博拉感染方面最有效的知识,这可能会导致埃博拉病毒靶向治疗的发展,也有利于相关包膜病毒的研究和靶向类似病毒蛋白介导的类似病毒进入事件。 该项目还将教育本科生,研究生和博士后学生使用和分析创新的计算对接和实验生物物理方法,以帮助下一代科学家准备在未来攻击重要的研究问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Jacobs其他文献
Should I Unplug the Phones Again: Understanding Government Hospice Audits and “Pre-Tecting” Your Organization Through Robust Provider Documentation (TH303)
- DOI:
10.1016/j.jpainsymman.2017.12.005 - 发表时间:
2018-02-01 - 期刊:
- 影响因子:
- 作者:
Patrick White;Howard Young;Amy Jacobs;Christopher Jones - 通讯作者:
Christopher Jones
Gaming the System: Creative, Simple, and Effectives Educational Interventions to Enhance Hospice IDT Learning on Key Clinical and Regulatory Topics (FR454)
- DOI:
10.1016/j.jpainsymman.2019.12.161 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:
- 作者:
Patrick H. White;Amy Jacobs;Mary G. Mihalyo;Lori Bishop;Keith R. Lagnese - 通讯作者:
Keith R. Lagnese
Identifying Current Practice Patterns for the Treatment of Nausea in Advanced Cancer Patients in the Hospice Setting (GP128)
确定临终关怀环境中晚期癌症患者恶心治疗的现行实践模式(GP128)
- DOI:
10.1016/j.jpainsymman.2024.02.520 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:3.500
- 作者:
Patrick H. White;Robert Arnold;Elizabeth Blaney;Daniel Paget;Andrea Holthaus;Amy Jacobs - 通讯作者:
Amy Jacobs
Covalent Inhibition of HIV Membrane Fusion
- DOI:
10.1016/j.bpj.2008.12.1814 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Amy Jacobs - 通讯作者:
Amy Jacobs
An Approach for Evaluating the Repeatability of Rapid Wetland Assessment Methods: The Effects of Training and Experience
- DOI:
10.1007/s00267-009-9316-6 - 发表时间:
2009-06-06 - 期刊:
- 影响因子:3.000
- 作者:
Alan T. Herlihy;Jean Sifneos;Chris Bason;Amy Jacobs;Mary E. Kentula;M. Siobhan Fennessy - 通讯作者:
M. Siobhan Fennessy
Amy Jacobs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
- 批准号:
2409274 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403883 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425431 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425430 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403882 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
- 批准号:
2425429 - 财政年份:2024
- 资助金额:
$ 6.65万 - 项目类别:
Standard Grant