Cluster-Robust Estimates for Galerkin and Petrov-Galerkin Discretizations of Elliptic Eigenvalue Problems
椭圆特征值问题的 Galerkin 和 Petrov-Galerkin 离散化的聚类鲁棒估计
基本信息
- 批准号:1522471
- 负责人:
- 金额:$ 14.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Eigenvalue problems for differential operators naturally arise in the study of vibrations in membranes and solids, fluid-solid interactions, and photonic crystals, and they also often play an important role in the practical analysis of many other time-dependent phenomena, such as acoustic or electromagnetic scattering. For many problems of interest, it is necessary to have provably efficient and robust means of estimating the error in computed approximations, as well as algorithms that can use this information to intelligently improve the approximations. This project concerns theoretical and algorithmic development of eigenvalue error estimates and self-adaptive methods for three computational approaches that promise to broaden the scope of available tools for addressing these challenging problems.The PI considers eigenvalue problems arising from second-order, linear, differential operators that are not necessarily self-adjoint, and which may have continuous components in their spectrum. The proposed work includes the development of a posteriori eigenvalue/eigenspace error estimates that are robust in the presence of repeated or tightly-clustered discrete eigenvalues---even if they are near components of the essential spectrum. Three broad classes of discretizations will be considered: penalty-based Discontinuous Galerkin (DG) methods, Discontinuous Petrov-Galerkin (DPG) methods, and so-called Implicit Element methods, which include variations on Virtual Element (VEM) methods and Boundary-Element-Based Finite Element (BEM-FEM) methods. In each case, the project will provide a posteriori error estimates that are cluster-robust in the sense that are insensitive to distances between true eigenvalues within the cluster that one is approximating, but instead depend on the relative distance between this cluster and the rest of the spectrum. In the case of DG methods, the PI expects to produce at least one provably-convergent, high-order adaptive method. In the case of implicit elements, he will first produce a high-order source-problem solver that is competitive with VEM and BEM-FEM, develop corresponding a posteriori error estimates, and then extend the approach to eigenvalue problems. In the case of DPG methods, he plans to exploit the fact that, with these techniques, indefinite source problems can be treated in a computational way that only involves self-adjoint and positive definite systems, and use this to derive a FEAST-like algorithm for computing large spectral clusters and/or clusters higher in the spectrum.
微分算子的本征值问题自然出现在膜和固体振动、流固相互作用和光子晶体的研究中,它们也经常在许多其他时间相关现象的实际分析中发挥重要作用,如声学或电磁散射。对于许多感兴趣的问题,需要有可证明的有效和鲁棒的方法来估计计算近似中的误差,以及可以使用这些信息来智能地改进近似的算法。本项目涉及三种计算方法的特征值误差估计和自适应方法的理论和算法发展,这些计算方法有望扩大解决这些具有挑战性问题的可用工具的范围。PI考虑由二阶、线性、微分算子引起的特征值问题,这些算子不一定是自伴随的,它们的谱中可能有连续的分量。提出的工作包括开发一种后验特征值/特征空间误差估计,这种估计在重复或紧密聚类的离散特征值存在时是鲁棒的——即使它们接近基本谱的分量。将考虑三大类离散化:基于惩罚的间断Galerkin (DG)方法,间断Petrov-Galerkin (DPG)方法和所谓的隐式单元方法,其中包括虚拟单元(VEM)方法和基于边界单元的有限元(BEM-FEM)方法的变体。在每种情况下,该项目将提供一个后验误差估计,该估计在某种意义上是集群鲁棒性的,对逼近的集群内真实特征值之间的距离不敏感,而是依赖于该集群与频谱其余部分之间的相对距离。在DG方法的情况下,PI期望产生至少一个可证明收敛的高阶自适应方法。在隐式元素的情况下,他将首先产生一个与VEM和BEM-FEM竞争的高阶源问题求解器,开发相应的后验误差估计,然后将该方法扩展到特征值问题。在DPG方法的案例中,他计划利用这样一个事实,即利用这些技术,不确定源问题可以用一种只涉及自伴随和正定系统的计算方式来处理,并利用这一点推导出一种类似feast的算法,用于计算大光谱簇和/或光谱中更高的簇。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Ovall其他文献
Jeffrey Ovall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Ovall', 18)}}的其他基金
Computational Tools for Exploring Eigenvector Localization
用于探索特征向量定位的计算工具
- 批准号:
2208056 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
A Fitted Finite Element Method for the Modeling of Complex Materials
复杂材料建模的拟合有限元方法
- 批准号:
2012285 - 财政年份:2020
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
Investigation of Auxiliary Subspace Techniques as a General Tool for A Posteriori Error Estimation
辅助子空间技术作为后验误差估计通用工具的研究
- 批准号:
1414365 - 财政年份:2013
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
Investigation of Auxiliary Subspace Techniques as a General Tool for A Posteriori Error Estimation
辅助子空间技术作为后验误差估计通用工具的研究
- 批准号:
1216672 - 财政年份:2012
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
- 批准号:
2330377 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
- 批准号:
24K20794 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Fellowship
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
- 批准号:
24K07131 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
- 批准号:
2339746 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
- 批准号:
2411394 - 财政年份:2024
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant