Advancements in the Ultraspherical Spectral Method
超球面光谱方法的进展
基本信息
- 批准号:1522577
- 负责人:
- 金额:$ 14.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2016-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The numerical solution of real-world fluid flow and airfoil problems needs an accurate, flexible, and fully-adaptive spectral element method. The so-called ultraspherical spectral method, with its sparsity and regularity preserving discretizations, is promising to overcome many of the traditional computational barriers. This research project will exploit and investigate the remarkable properties of the ultraspherical spectral method with the aim of producing a high quality and industrial-strength spectral element solver for partial differential equations. One key feature will be its robustness to pinching boundary features, typical with airfoils, that will alleviate the current tremendous burden on mesh generation algorithms. The project will radically alter the perception of spectral methods in the computational mathematics and engineering communities by extensively demonstrating that, when done carefully, they can be a flexible, general, and powerful numerical tool.Today's pseudospectral methods deliver both convenience and spectrally accurate discretizations for the solution of differential equations. However, they lead to dense discretizations, numerical instability, and a severe limitation to simple geometries. The novel ultraspherical spectral method is an alternative that retains the same accuracy and convenience, but leads to almost banded well-conditioned discretizations that faithfully preserves the regularity of the underlying differential operator while also being amenable to specialized fast linear algebra routines. Based on this new spectral method, the PI will derive a new mathematically-grounded fully-adaptive spectral element method for meshed geometries. Key novel computational features will include: (1) A high accuracy on mesh elements that is independent of the aspect ratio; (2) True hp-adaptivity that allows for essentially arbitrarily large element degree p and small average mesh element size h (without concern of ill-conditioning); and (3) The flexibility to solve a wide range of differential equations with general boundary constraints; and (4) Local refinement and mesh coarsening for the resolution of corner singularities. This new spectral element method will be applied to challenging partial differential equations for the state-of-the-art numerical simulation of advection-dominated fluid flow problems.
真实世界流体流动和翼型问题的数值求解需要一种精确、灵活和完全自适应的谱单元方法。所谓超球谱方法,由于其稀疏性和正则性保持离散化,有望克服许多传统的计算障碍。这项研究项目将开发和研究超球谱方法的显著特性,目的是产生一个高质量和工业强度的偏微分方程组的谱元素求解器。其中一个关键特征是它对挤压边界特征的稳健性,这是翼型的典型特征,这将减轻目前网格生成算法的巨大负担。该项目将从根本上改变计算数学和工程界对谱方法的看法,因为它广泛地展示了,如果仔细操作,它们可以成为一种灵活、通用和强大的数值工具。今天的伪谱方法为微分方程组的求解提供了方便和频谱准确的离散化。然而,它们会导致密集的离散化、数值不稳定以及对简单几何图形的严重限制。新的超球谱方法是一种替代方法,它保持了相同的精度和便利性,但导致了几乎带状的良好条件离散化,忠实地保持了基本微分算子的正则性,同时也服从专门的快速线性代数例程。基于这种新的谱方法,PI将推导出一种新的网格几何的数学基础的全自适应谱单元方法。主要的新颖计算功能将包括:(1)与长宽比无关的网格单元的高精度;(2)真正的hp-自适应性,允许基本上任意大的单元阶数p和小的平均网格单元尺寸h(无需考虑病态);(3)灵活地求解具有一般边界约束的各种微分方程组;以及(4)用于解决角点奇异性的局部细化和网格粗化。这种新的谱元素方法将被用于挑战偏微分方程组,用于最新的对流主导流体流动问题的数值模拟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Townsend其他文献
A generalization of the randomized singular value decomposition
随机奇异值分解的推广
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Nicolas Boulle;Alex Townsend - 通讯作者:
Alex Townsend
COMPUTING WITH FUNCTIONS IN THE BALLast
使用 BALLast 中的函数进行计算
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Alex Townsend - 通讯作者:
Alex Townsend
Are sketch-and-precondition least squares solvers numerically stable?
草图和前提条件最小二乘求解器数值稳定吗?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.5
- 作者:
Maike Meier;Y. Nakatsukasa;Alex Townsend;M. Webb - 通讯作者:
M. Webb
Circulant networks of identical Kuramoto oscillators: Seeking dense networks that do not globally synchronize and sparse ones that do
相同仓本振荡器的循环网络:寻求不全局同步的密集网络和全局同步的稀疏网络
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Alex Townsend;M. Stillman;S. Strogatz - 通讯作者:
S. Strogatz
Learning Elliptic Partial Differential Equations with Randomized Linear Algebra, Foundations of Computational Mathematics
用随机线性代数学习椭圆偏微分方程,计算数学基础
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Nicolas Boulle;Alex Townsend - 通讯作者:
Alex Townsend
Alex Townsend的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Townsend', 18)}}的其他基金
CAREER: Computing with Rational Functions
职业:使用有理函数进行计算
- 批准号:
2045646 - 财政年份:2021
- 资助金额:
$ 14.48万 - 项目类别:
Continuing Grant
Collaborative Research: Optimal-Complexity Spectral Methods for Complex Fluids
合作研究:复杂流体的最优复杂谱方法
- 批准号:
1952757 - 财政年份:2020
- 资助金额:
$ 14.48万 - 项目类别:
Standard Grant
A Solve-Then-Discretize Paradigm for Spectral Methods
谱方法的求解然后离散范式
- 批准号:
1818757 - 财政年份:2018
- 资助金额:
$ 14.48万 - 项目类别:
Continuing Grant
Advancements in the Ultraspherical Spectral Method
超球面光谱方法的进展
- 批准号:
1645445 - 财政年份:2016
- 资助金额:
$ 14.48万 - 项目类别:
Standard Grant
相似海外基金
Advancements in the Ultraspherical Spectral Method
超球面光谱方法的进展
- 批准号:
1645445 - 财政年份:2016
- 资助金额:
$ 14.48万 - 项目类别:
Standard Grant
Generalized Weierstrass, Hankel and Ultraspherical Distributional, and Polynomial Transformations
广义 Weierstrass、Hankel 和超球分布以及多项式变换
- 批准号:
7034390 - 财政年份:1970
- 资助金额:
$ 14.48万 - 项目类别: