Hybrid Numerical Methods for Three-Phase Flows with Moving Contact Lines

动接触线三相流的混合数值方法

基本信息

项目摘要

Multiphase flows that involve both solid bodies and fluid interfaces are ubiquitous in many applications such as particle-stabilized emulsions, flotation technology, and animal locomotion at fluid interfaces. These applications play important roles in the mining industry, micro- and nanotechnologies, biotechnology, and environmental science. For example, nanoparticles may self-assemble on a fluid interface due to capillary forces; this effect can be used in the fabrication of nanostructured materials. Dry water, a water-in-air emulsion stabilized by silica nanoparticles, has demonstrated extraordinary capability to absorb carbon dioxide and is potentially useful in the war against global warming. Flotation techniques, where gas bubbles are used to remove suspended particles, have been widely used in wastewater treatment. This project aims to develop numerical tools for detailed studies of these complex flows and to resolve fundamental questions that arise in applications. The project will also provide hands-on training opportunities for graduate students to work in interdisciplinary research. The goal of this project is to develop hybrid numerical methods for the direct numerical simulation of flow problems where deformable fluid interfaces, moving rigid particles, and moving contact lines coexist. An arbitrary Lagrangian-Eulerian (ALE) algorithm on an unstructured adaptive moving mesh will be adopted to track the moving boundaries of rigid particles. Two interface-capturing methods based on the same moving mesh, namely the phase-field and the level set methods, will be developed to capture the deformation of fluid interfaces as well as the moving contact lines. These hybrid ALE-interface-capturing methods combine the advantages of both components: the ALE method provides an accurate representation of the particle surface, which is critical for delicate contact-line conditions; the interface-capturing methods easily handle the topological transitions of fluid interfaces. In particular, the ALE-phase-field approach satisfies an energy law and is essentially free of parasitic currents. Finite-element software packages will be developed to implement the proposed methods. This work will advance the development of numerical algorithms for different types of moving boundary problems and also enrich the understanding of contact-line dynamics in complex systems.
在许多应用中,涉及固体体和流体界面的多相流在流体界面的许多应用中无处不在,例如粒状型乳液,浮选技术和动物运动。这些应用在采矿业,微技术,生物技术和环境科学中起着重要作用。例如,纳米颗粒可能由于毛细管而在流体界面上自组装。这种效果可用于制造纳米结构材料。干水是一种由二氧化硅纳米颗粒稳定的空气乳液,已经表现出具有吸收二氧化碳的非凡能力,并且在针对全球变暖的战争中可能有用。使用气泡用于去除悬浮颗粒的浮选技术已广泛用于废水处理中。该项目旨在开发数值工具,以详细研究这些复杂的流动,并解决应用程序中出现的基本问题。该项目还将为研究生提供动手培训机会,以便在跨学科研究中工作。 该项目的目的是开发混合数值方法,以直接对流量问题进行直接数值模拟,其中可变形的流体接口,移动刚性颗粒和移动接触线共存。将采用任意的Lagrangian-Eulerian(ALE)算法,在非结构化的自适应移动网格上,以跟踪刚性颗粒的移动边界。将开发出两种基于相同移动网格的接口捕获方法,即相处和水平集方法,以捕获流体接口的变形以及移动接触线的变形。这些混合淡啤酒接口捕获方法结合了这两个组件的优点:ALE方法提供了粒子表面的准确表示,这对于微妙的接触线条件至关重要;接口捕获方法很容易处理流体界面的拓扑跃迁。特别是,ALE期田间方法满足了能源法,并且基本上没有寄生流。将开发有限元件软件包来实现所提出的方法。这项工作将推动针对不同类型的移动边界问题的数值算法的开发,并丰富对复杂系统中的接触线动力学的理解。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermodynamically consistent phase-field modelling of contact angle hysteresis
  • DOI:
    10.1017/jfm.2020.465
  • 发表时间:
    2020-09-25
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Yue, Pengtao
  • 通讯作者:
    Yue, Pengtao
A semi-analytical method to estimate the effective slip length of spreading spherical-cap shaped droplets using Cox theory
  • DOI:
    10.1088/1873-7005/aaaef6
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    M. Wörner;Xuan Cai;H. Alla;P. Yue
  • 通讯作者:
    M. Wörner;Xuan Cai;H. Alla;P. Yue
A level-set method for moving contact lines with contact angle hysteresis
具有接触角滞后的移动接触线的水平设置方法
  • DOI:
    10.1016/j.jcp.2020.109636
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Zhang, Jiaqi;Yue, Pengtao
  • 通讯作者:
    Yue, Pengtao
A high-order and interface-preserving discontinuous Galerkin method for level-set reinitialization
  • DOI:
    10.1016/j.jcp.2018.11.029
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiaqi Zhang;P. Yue
  • 通讯作者:
    Jiaqi Zhang;P. Yue
The influences of “gas” viscosity on water entry of hydrophobic spheres
  • DOI:
    10.1140/epje/i2019-11795-9
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feng-Chao Yang;Xiaopeng Chen;P. Yue
  • 通讯作者:
    Feng-Chao Yang;Xiaopeng Chen;P. Yue
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pengtao Yue其他文献

Triple-phase electrocatalysis for the enhanced CO2 reduction to HCOOH on a hydrophobic surface
三相电催化在疏水表面增强 CO2 还原为 HCOOH
  • DOI:
    10.1016/j.cej.2020.126975
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Pengtao Yue;Qian Fu;Jun Li;Liang Zhang;Lei Xing;Zhongyin Kang;Qiang Liao;Xun Zhu
  • 通讯作者:
    Xun Zhu

Pengtao Yue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pengtao Yue', 18)}}的其他基金

Collaborative Research: Models, algorithms, simulations and applications for dendritic solidifications of two-phase multi-component alloys in the mushy zone
合作研究:糊状区两相多组分合金枝晶凝固的模型、算法、模拟和应用
  • 批准号:
    2309732
  • 财政年份:
    2023
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Models, Algorithms, Simulations, and Applications for Three-Phase Systems with Solidification and Moving Contact Lines
协作研究:具有凝固和移动接触线的三相系统的模型、算法、仿真和应用
  • 批准号:
    2012480
  • 财政年份:
    2020
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Standard Grant

相似国自然基金

基于MaCOM 1.0海洋数值模式的解析四维集合变分数据同化方法研究
  • 批准号:
    42376190
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
双区域自然对流耦合模型的高效数值方法研究
  • 批准号:
    12361077
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
水平井控水完井多重耦合精细数值模拟与优化设计方法
  • 批准号:
    52374055
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
钻爆法海底隧道上覆岩体灾变机理与演化过程数值模拟方法研究
  • 批准号:
    52309135
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Stokes界面问题非拟合压力鲁棒数值方法与理论分析
  • 批准号:
    12301469
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Hybrid Computational Modeling and Advanced Numerical Methods for Biomolecular Interactions
生物分子相互作用的混合计算模型和高级数值方法
  • 批准号:
    2208465
  • 财政年份:
    2022
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Standard Grant
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
  • 批准号:
    RGPIN-2014-06582
  • 财政年份:
    2018
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
  • 批准号:
    RGPIN-2014-06582
  • 财政年份:
    2017
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid numerical-analytical methods for subsurface flow simulation
地下流动模拟的混合数值分析方法
  • 批准号:
    327541-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
  • 批准号:
    RGPIN-2014-06582
  • 财政年份:
    2016
  • 资助金额:
    $ 16.72万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了