How Geochemistry Provides Habitability: A Case Study of the Microbial Iron Cycle

地球化学如何提供宜居性:微生物铁循环的案例研究

基本信息

  • 批准号:
    1529963
  • 负责人:
  • 金额:
    $ 23.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

The objective of this project is to identify the reasons why microorganisms can live where they live. The focus is on identifying livable conditions in the environment, with the goal of explaining how temperatures and geochemical compositions combine to allow and support microbial life. Two things have to be true for an environment to be habitable: there have to be sources of energy, and those sources of energy have to persist long enough for life to take advantage of them. Things that burst into flame are not good to eat. Habitability can be quantified by combining methods to calculate the amounts of chemical energy available to microbes with measurements of the rates that resulting reactions happen with and without microbes present. The importance of this approach is that it can be used in diverse environments from soils to deep in the Earth's crust, allowing an expansion of scientific understanding of how our planet supports life, and even in biological systems including the human gut where there could be surprising applications to improve human health. In this study, environments that support microbes that use iron reactions as their source of energy will be studied including hot springs, acid mine drainage, and cold springs fed by snowmelt. By examining the same processes across diverse environments, this case study of the microbial iron cycle will serve as a template for future studies of other chemical energy sources. Ultimately these efforts will allow researchers to explain underlying reasons for the immense microbial diversity found on Earth.Two things have to be true for microbes to gain chemical energy from the environment. First, there must be a source of energy. This requires the presence of compounds in differing oxidation states that are out of thermodynamic equilibrium with one another. Second, there must be mechanistic difficulties that are keeping those compounds from reacting, which means that the chemical energy cannot dissipate by itself. Using this energetic reference frame, geochemical habitability can be defined and quantified by the combined presence of thermodynamic and kinetic limitations at diverse environments on and in the Earth. As an example, microorganisms across the phylogenetic tree of life gain energy by reacting dissolved reduced iron with oxygen in environments ranging in temperature from freezing to boiling and pH values between 2 and 7. However, not all combinations of pH and temperature are habitable. In high-pH environments this reaction occurs rapidly on its own, which prevents microorganisms from using it, and the pH where this kinetic barrier occurs decreases with increasing temperature. In acidic environments, however, the abiotic oxidation reaction rate is significantly slowed, allowing microorganisms to catalyze iron oxidation and conserve some of the energy released. However, increasing acidity lowers the energy yield, ultimately creating an energy boundary to habitability at the lowest values of pH. Combining such energetic and kinetic boundaries permits habitability to be mapped for individual reactions using geochemical variables that include pH, temperature, and concentrations of reactants and products of the reaction. It is a goal of this research to generate habitability maps for the case study of iron oxidation and reduction reactions. Geochemical data from fieldwork at hot springs, acid mine drainage, and cold springs fed by snowmelt will be used to calculate energy supplies. Field experiments of biotic and abiotic rates of iron oxidation and reduction will determine kinetic limitations. Complementary lab experiments will provide abiotic rates. Molecular analyses will reveal the microbes likely to be responsible for driving the biological iron redox cycle in these environments. The resulting multi-dimensional habitability maps for several iron oxidation and reduction reactions will provide a framework for future studies of many other chemolithotrophic metabolic process throughout surface and subsurface environments on Earth, which will quantitatively constrain the discussion of habitability on other planets.
这个项目的目标是找出微生物可以在它们生活的地方生活的原因。重点是确定环境中的宜居条件,目的是解释温度和地球化学成分是如何结合在一起允许和支持微生物生命的。要想让环境宜居,必须有两件事是正确的:必须有能源,这些能源必须持续足够长的时间,以便生命能够利用它们。起火的东西不好吃。通过将计算微生物可利用的化学能量的方法与在微生物存在和不存在的情况下所产生的反应发生的速率的测量相结合,可以对宜居性进行量化。这种方法的重要性在于,它可以用于从土壤到地壳深处的各种环境中,允许扩大对我们的星球如何支持生命的科学理解,甚至可以用于包括人类肠道在内的生物系统,在这些系统中,可能会有令人惊讶的应用来改善人类健康。在这项研究中,将研究支持以铁反应为能源的微生物的环境,包括温泉、酸性矿山排水和融雪供应的冷泉。通过研究不同环境中的相同过程,微生物铁循环的这一案例研究将成为未来研究其他化学能源的模板。最终,这些努力将使研究人员能够解释在地球上发现的巨大微生物多样性的潜在原因。微生物要从环境中获得化学能量,必须有两件事是正确的。首先,必须有一个能源来源。这需要存在处于不同氧化状态的化合物,这些化合物彼此之间失去了热力学平衡。其次,一定存在阻止这些化合物反应的机械困难,这意味着化学能不能自行消散。利用这一能量参照系,可以通过地球上和地球上不同环境中热力学和动力学限制的组合存在来定义和量化地球化学宜居性。例如,生命系统发育树上的微生物通过溶解的还原铁与氧气反应获得能量,环境温度从冻结到沸腾,pH值在2到7之间。然而,并不是所有的pH和温度组合都适合居住。在高pH环境中,这一反应会迅速发生,这会阻止微生物使用它,并且发生这种动力学障碍的pH会随着温度的升高而降低。然而,在酸性环境中,非生物氧化反应速度显著放缓,使微生物能够催化铁氧化,并节省一些释放的能量。然而,增加酸度会降低能量产量,最终在最低的pH值下形成宜居性的能量边界。结合这样的能量和动力学边界,可以使用包括pH、温度和反应物和反应产物的浓度在内的地化变量来绘制单个反应的宜居性地图。这项研究的一个目标是为铁氧化和还原反应的案例研究生成宜居图。将使用在温泉、酸性矿山排水和融雪供应的冷泉进行实地考察的地球化学数据来计算能源供应。铁的生物和非生物氧化还原速率的现场实验将确定动力学极限。互补性的实验室实验将提供非生物率。分子分析将揭示在这些环境中可能负责驱动生物铁氧化还原循环的微生物。由此产生的几个铁氧化和还原反应的多维宜居性地图将为未来研究地球表面和亚表层环境中的许多其他化学物质营养代谢过程提供一个框架,这将定量地限制对其他行星宜居性的讨论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Everett Shock其他文献

1 F ORWARD G EOCHEMICAL M ODELING AS A G UIDING T OOL D URING 2 E XPLORATION OF S EA C LIFF H YDROTHERMAL F IELD , G ORDA R IDGE
1 正演地球化学模拟作为指导工具 2 戈达岭海崖热液场勘探
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Milesi;Everett Shock;T. Ely;M. Lubetkin;Sean P. Sylva;Z. Mirmalek;Christopher R. German;Darlene S. S. Lim
  • 通讯作者:
    Darlene S. S. Lim
Multiple parameters enable deconvolution of water-rock reaction paths in low-temperature vent fluids of the Kamaʻehuakanaloa (Lōʻihi) seamount
多个参数使得能够对卡迈厄哈卡纳洛阿(洛希)海山低温喷口流体中的水-岩反应路径进行反卷积。
  • DOI:
    10.1016/j.gca.2023.03.013
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Vincent Milesi;Everett Shock;Jeffrey Seewald;Elizabeth Trembath-Reichert;Sean P. Sylva;Julie A. Huber;Darlene S.S. Lim;Christopher R. German
  • 通讯作者:
    Christopher R. German

Everett Shock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Everett Shock', 18)}}的其他基金

EAGER: Collaborative Research: Has Recent Tectono-Magmatic Activity at Loihi (Kamaehuakanaloa) Seamount perturbed vent-fluid circulation and hydrothermal Fe export to the ocean?
EAGER:合作研究:洛伊希 (Kamaehuakanaloa) 海山最近的构造岩浆活动是否扰动了喷口流体循环和热液铁向海洋的输出?
  • 批准号:
    2220821
  • 财政年份:
    2022
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
EAR-Climate: An Open-Source Facility for Water-Organic-Rock-Microbe (WORM) Reaction Modeling
EAR-Climate:用于水-有机岩-微生物 (WORM) 反应建模的开源设施
  • 批准号:
    2149016
  • 财政年份:
    2022
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
WORM: The Water-Organic-Rock-Microbe Reaction Modeling Ecosystem
WORM:水-有机岩-微生物反应建模生态系统
  • 批准号:
    1949030
  • 财政年份:
    2020
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
SI2-SSI: Collaborative Research: ENKI: Software infrastructure that ENables Knowledge Integration for Modeling Coupled Geochemical and Geodynamical Processes
SI2-SSI:协作研究:ENKI:支持知识集成以建模耦合地球化学和地球动力学过程的软件基础设施
  • 批准号:
    1550229
  • 财政年份:
    2016
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Alteration of mantle peridotite: Geochemical fluxes and dynamics of far from equilibrium transport
合作研究:地幔橄榄岩的蚀变:地球化学通量和远离平衡传输的动力学
  • 批准号:
    1515513
  • 财政年份:
    2015
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
How Minerals Control Hydrothermal Organic Reactivity
矿物质如何控制热液有机反应
  • 批准号:
    1357243
  • 财政年份:
    2014
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Combining Methods from Geochemistry and Molecular Biology to Predict the Functions of Microbial Communities
合作研究:结合地球化学和分子生物学的方法来预测微生物群落的功能
  • 批准号:
    1123649
  • 财政年份:
    2011
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
RIDGE: Tipping Points in the Evolution of Submarine Hydrothermal Systems: Habitat Generation, Organic Transformation, and Rock Alteration
RIDGE:海底热液系统演化的临界点:栖息地生成、有机转化和岩石蚀变
  • 批准号:
    0937406
  • 财政年份:
    2009
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Ocean Crust Alteration and the Deep Biosphere
洋壳变化与深层生物圈
  • 批准号:
    0752541
  • 财政年份:
    2008
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
ETBC: Organic Geochemical Transformations and the Deep Biosphere -- Identifying the Food Sources for Microbes in Sedimentary Systems
ETBC:有机地球化学转化和深层生物圈——识别沉积系统中微生物的食物来源
  • 批准号:
    0826588
  • 财政年份:
    2008
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Bubble Trouble - Re-evaluating olivine melt inclusion barometry and trace-element geochemistry in the Cascades
合作研究:气泡麻烦 - 重新评估喀斯喀特橄榄石熔体包裹体气压和微量元素地球化学
  • 批准号:
    2342155
  • 财政年份:
    2024
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Bubble Trouble - Re-evaluating olivine melt inclusion barometry and trace-element geochemistry in the Cascades
合作研究:气泡麻烦 - 重新评估喀斯喀特橄榄石熔体包裹体气压和微量元素地球化学
  • 批准号:
    2342156
  • 财政年份:
    2024
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Geochronology, Petrology, and Geochemistry of the Jurassic White Mountain Batholith, New Hampshire
新罕布什尔州侏罗纪白山岩基的年代学、岩石学和地球化学
  • 批准号:
    2327629
  • 财政年份:
    2024
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
OCE-PRF: Impacts of endolithic microbial sulfur cycling on coral holobiont ecophysiology, biomineralization, and geochemistry
OCE-PRF:内石微生物硫循环对珊瑚全生物生态生理学、生物矿化和地球化学的影响
  • 批准号:
    2205993
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
Collaborative Research: From Global to Local: Geochemistry of Global Phosphate Ores and Implications for Tracing the Environmental Impacts of Fertilizers Utilization
合作研究:从全球到地方:全球磷矿石的地球化学以及追踪化肥利用对环境影响的意义
  • 批准号:
    2305947
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
GEO-CM: Prospecting for critical element deposits: an interdisciplinary approach using experimental geochemistry and field-informed modeling of sediment transport
GEO-CM:关键元素矿床勘探:利用实验地球化学和沉积物输运现场知情建模的跨学科方法
  • 批准号:
    2327940
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
CAREER: GLOW: The Long-Term Histories of Geologically Active Solar System Moons from Isotope Geochemistry
职业:发光:同位素地球化学中地质活跃的太阳系卫星的长期历史
  • 批准号:
    2238344
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Continuing Grant
Conference: 2023 Catchment Science: Interactions of Hydrology, Biology and Geochemistry GRC and GRS Challenges and Uncertainty in Predicting Catchment Responses to Stress
会议:2023 流域科学:水文学、生物学和地球化学的相互作用 GRC 和 GRS 的挑战以及预测流域压力响应的不确定性
  • 批准号:
    2312602
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Standard Grant
EAR-PF: Quantifying evaporation in Mono Basin: Bridging the gap between hydrologic modeling and paleoclimate records using triple oxygen and clumped isotope geochemistry
EAR-PF:量化莫诺盆地的蒸发:利用三重氧和聚集同位素地球化学弥合水文模型和古气候记录之间的差距
  • 批准号:
    2204433
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Fellowship Award
Exploring the geochemistry of Jupiter's ice moons
探索木星冰卫星的地球化学
  • 批准号:
    2868580
  • 财政年份:
    2023
  • 资助金额:
    $ 23.5万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了